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Abstract—The goal of addressee detection is to answer the
question, “Are you talking to me?” When a dialogue system
interacts with multiple users, it is crucial to detect when a user is
speaking to the system as opposed to another person. We study
this problem in a multimodal scenario, using lexical, acoustic,
visual, dialogue state, and beamforming information. Using data
from a multiparty dialogue system, we quantify the benefits
of using multiple modalities over using a single modality. We
also assess the relative importance of the various modalities, as
well as of key individual features, in estimating the addressee.
We find that energy-based acoustic features are by far the
most important, that information from speech recognition and
system state is useful as well, and that visual and beamforming
features provide little additional benefit. While we find that head
pose is affected by whom the speaker is addressing, it yields
little nonredundant information due to the system acting as a
situational attractor. Our findings would be relevant to multiparty,
open-world dialogue systems in which the agent plays an active,
conversational role, such as an interactive assistant deployed in
a public, open space. For these scenarios, our study suggests that
acoustic, lexical, and system-state information is an effective and
practical combination of modalities to use for addressee detection.
We also consider how our analyses might be affected by the
ongoing development of more realistic, natural dialogue systems.
Index Terms—Addressee detection, beamforming, dialogue

system, head pose, human-human-computer, multimodal,
multiparty, prosody, speech recognition.

I. INTRODUCTION

M ORE and more, speech-enabled dialogue systems
are embedded in our environment in entertainment

systems, mobile phones, and wearable accessories. These
devices increasingly employ multimodal sensors and allow for
natural interactions via conversational software agents. The
confluence of these trends exacerbates the problem of knowing
when to interpret the user’s inputs as system-directed, rather
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than as unrelated actions or communication with humans. For
vision-based systems, this is often called the “Midas Touch”
problem. For speech-based systems, this problem is known as
addressee detection (AD).
Addressee detection tries to answer the question, “Who are

you talking to?” In human-to-computer (H-C) interactions,
the problem includes the rejection of self-talk and background
speech, but becomes harder in a multi-human-computer sce-
nario, since users now have a choice of talking to the system
as well to humans. Traditionally, user interfaces have been
engineered to remove addressee ambiguity (e.g., through
prompted interaction or push-to-talk), or to assume that all
potential inputs are system-directed and to reject them based
on failure-to-recognize or failure-to-interpret [1], [2]. Both
approaches are no longer feasible as systems allow natural in-
teractions with essentially unlimited domain coverage (e.g., the
input could comprise a general search query in conversational
form). We must therefore look to more comprehensive cues
and more sophisticated classification methods to determine
addressee for a potential input.
The work reported here improves upon two previous lines

of work on human-human-computer (H-H-C) addressee detec-
tion. One is our previous work on multimodal interfaces and
the exploitation of multiple modalities for addressee classifi-
cation [3], [4]. The other is the characterization of speaking
style and lexical content, which in conjunction yield highly ac-
curate addressee estimates based on speech alone [5]–[7]. The
present paper has two main contributions. The first main con-
tribution is to present the most comprehensive multimodal ap-
proach to date, which includes a much wider range of infor-
mation than previous approaches and incorporates recent ad-
vances in speech-only AD. Specifically, we combine prosodic,
lexical, visual, dialogue state, and beamforming information as
can now be obtained from consumer-grade sensors and speech
technology. The second main contribution is to determine what
type of information is most useful for the AD task in the mul-
timodal scenario, both at the feature level and by modalities
in aggregate. This type of analysis can both guide future re-
search into the problem and inform engineering solutions that
need to achieve best possible results with the least resources and
complexity.
The paper is organized as follows. Section II reviews related

work. Section III describes the experimental setup, including
a detailed explanation of our multimodal addressee detection
system. Section IV reports the results of our experiments, while
Section V describes various analyses to determine detailed con-
tributions to overall performance. Finally, Section VI summa-
rizes the findings and open questions.
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II. RELATED WORK

In this section we summarize previous work and explain how
this paper fits into the broader landscape of research.
A natural starting point in tackling addressee detection is un-

derstanding human behavior and language in group situations
involving a computer or robot. There is a large body of work in
the human computer interaction field on this topic, from which
we will sift out three key observations. The first observation is
that people tend to look at the device they are talking to. Works
by Brumitt and Cadiz [8] and Maglio et al. [9] show that,
when confronted with multiple speech-enabled devices, people
specify the recipient of their request through eye gaze. The
second observation is that how a person sees a robot strongly
shapes how he or she interacts with it. For example, Lee et al.
[10] demonstrate that people interact with a robot differently
depending on whether they see the robot as an information
kiosk or a receptionist. The third observation is that humans
tend to rely on several different types of information to discern
the addressee in H-H-C interactions. Several previous works
have examined the various cues that human evaluators use
to discern the intended addressee in recordings of multiparty
interactions involving a computer or information retrieval agent
[11]–[13]. These studies find that humans use a combination of
lexical, gaze, and prosodic information. All of the above work
motivates our multimodal approach to AD.
Next, we look at previous work in automatic addressee detec-

tion in H-H-C scenarios. As mentioned above, the way people
interact with a computer system depends heavily on the nature
of the computer system. For this reason, we will distinguish be-
tween two separate categories: scenarios in which the computer
system is passive and scenarios in which the computer system
is an active, conversational agent.
A number of works have focused on H-H-C scenarios where

the computer system is passive and simply receives commands.
Shriberg et al. [5], [7] focus on audio information only and ex-
plore various lexical and prosodic features for addressee detec-
tion. The setup involves two users trying to accomplish a web-
browsing task using speech commands to control the system.
These studies show that acoustic-prosodic features modeling
energy contour and raised voice are very effective, suggesting
that speakers use different speaking styles depending on who
they are talking to. Bakx et al. [14] explore face orientation and
utterance length to do addressee detection. In this scenario, a
user and partner use a tap-and-talk information kiosk to buy
train tickets. Katzenmaier et al. [15] explore head pose and lex-
ical features based on automatic speech recognition (ASR) hy-
potheses. In this setup, a host introduces an imaginary house-
hold robot to a guest and demonstrates some of its functionality.
The studies by Bakx and Katzenmaier both find that the com-
puter or robot is a major situational attractor. In other words,
people continued looking at the computer while talking to each
other. Note that the above works consider a variety of features
for AD, but each work only considers a few selected features or
modalities.
Finally, we consider works that investigate H-H-C scenarios

where the computer is an active, conversational agent, which
is the scenario of focus in this study. In these scenarios, the
computer both listens and speaks during interactions with users.

Baba, Huang, and colleagues [16], [17] explore prosodic and
head pose information to predict the addressee in a multiparty,
Wizard-of-Oz (WOZ) experiment. They find that intonation,
volume, and rate of speech are useful features, but that head di-
rection alone is insufficient to make good predictions. Van Turn-
hout et al. [18] explore eye gaze, dialogue state, and utterance
length as predictors for addressee detection. This is also a WOZ
setup in which two users engage with an interactive informa-
tion kiosk to book train tickets. They also find that the screen is a
major situational attractor. Skantze and Gustafson [19] use head
pose to monitor a user’s attention when he or she alternately in-
teracts with a human tutor and an interactive virtual scheduling
assistant. This study finds that head pose is an effective cue for
predicting addressee.
One shortcoming of all of the above approaches is that they

generally focus on only a few selected features or modalities,
which makes it difficult to perform a systematic study of the im-
portance of various features or modalities. Understanding which
individual features are most important is useful in guiding the
development of more effective features for AD. Understanding
which modalities are most important is useful for economy of
implementation, especially since adding a modality often incurs
a significant cost in equipment (e.g., adding a microphone array
or video camera), in system complexity (i.e., having to incorpo-
rate multiple modalities of information), and in data processing
(e.g., running face detection on a video stream). Such under-
standing will be of practical use to researchers building a system
that requires addressee detection.
The goal of this current work is to undertake such a system-

atic study: we adopt a comprehensive multimodal approach to
AD in a multiparty dialogue system in which the agent is an ac-
tive, conversational agent. We are aware of only one other work,
by Vinyals et al. [4], which examines AD in the context of a rich
multimodal data set. Our current work uses the same rich mul-
timodal data set as their study, but with a different focus. The
Vinyals et al. study explores discriminative learning techniques
applied to raw data streams, whereas our focus is on exploring
a much richer, broader set of multimodal features in order to
facilitate the study of feature importance as described above.
These multimodal features cover a wider range of information
than any of the individual works previously described, and they
incorporate recent advances in strong audio-only (prosodic and
lexical) features [5]. Furthermore, this work presents the first
detailed and comprehensive analysis of the relative importance
of and synergies among different features and modalities for the
AD task.1

III. EXPERIMENTAL SETUP
Wewill explain the experimental setup in three parts: the data,

the features, and the classifiers.

A. Data
In order to explore the use of multimodal features for AD

in H-H-C interactions, we need a data set that satisfies several

1This paper extends our earlier work [20], expanding the experiments to
include several different classifiers, investigating the most important individual
features, studying the effect of absolute energy and post-utterance context,
looking more closely into why the visual modality was not very important, and
conducting statistical tests on differences in equal error rate.
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Fig. 1. Snapshot of the collection setup.

key criteria. First, the data must contain multimodal informa-
tion. Some previous work has focused on addressee detection
using only audio information, so the data sets in those exper-
iments may not be suitable for our purposes. Second, the data
should comprise multiparty interactions in which two or more
humans simultaneously interact with a dialogue system. Third,
the interactions should allow people the option to talk to the
computer or to another person. If people are only allowed to in-
teract with the computer, the problem of AD becomes trivial.
Fourth, the data must have ground truth annotations of whom is
being spoken to. Annotating addressee information is time-con-
suming and is perhaps the most restrictive of the criteria.
Based on these criteria, we selected a data set from a multi-

party dialogue setup described by Bohus and Horvitz [21]. The
scenario involves groups of two or three people playing a trivia
question game with a computer agent. The computer is repre-
sented as a talking face displayed on a 19-inch computer mon-
itor. The agent has controllable head poses and limited facial
gestures, and it engages with the participants through dialogue
and face movement. The agent asks the group questions, con-
firms what one participant says with one other participant, and
then tells them if their answer is correct. The data set was de-
signed to study computational models of multiparty turn-taking,
and it encourages natural, fluid interactions. Fig. 1 shows a snap-
shot of the data collection setup.
Participants were recruited in pairs of people who knew each

other. They were divided into 15 groups of 4, where each group
consists of two pairs. Within each group of 4, every possible
subgroup of two or three was formed, and each subgroup played
one game together. This results in 10 games per group and 150
games in total.
The data available for our use included audio, video, beam-

forming, system state, and ASR information. The audio was
recorded by a linear microphone array, which can be seen
in Fig. 1 as a thin rectangular bar located directly above the
upper bezel of the monitor. The array is symmetric and con-
tains four uni-directional microphones, where the outer pair
of microphones are located 190 mm apart and the inner pair
are located 55 mm apart. The audio is processed with the
built-in Windows microphone array support, which provides
acoustic echo cancellation, minimum variance distortionless
response beamforming, and source localization in 10 degree
increments. The audio is further processed with the integrated
Windows speech recognizer using simple grammars. The video
data was collected with a wide-angle AXIS 212 camera with

a resolution of pixels. The camera can be seen
in Fig. 1 located above the microphone array. The system
processes the video data in real-time to track the faces of each
participant. It performs face detection on each frame, and then
associates detections across frames using a proximity based
algorithm [22]. For each detected face, the system runs a
Bayesian pose-tracking algorithm [23] that produces estimates
of 3-D head orientation. In addition to the audio and video
information, the system logs information describing various
aspects of the interaction, such as how many participants there
are, what the computer agent is saying, and who the agent is
looking at. More detailed information about the setup can be
found in the original works by Bohus and Horvitz [24], [21].
Note that all of the information described above is collected
or computed in real-time during the actual interaction, but we
perform our AD experiments in an offline setting.
In addition to the raw data, the data set includes manual an-

notations. The audio was automatically segmented by a speech
activity detector, and the resulting utterances were manually an-
notated with speech, speaker, and addressee information. Be-
cause the interactions between participants are unscripted, over-
lapped speech is a common occurrence. When there is overlap-
ping speech, the speaker, speech, and addressee information was
annotated for each stream of speech separately. Note that when
two people are speaking at the same time, one might be talking
to the computer while the other is talking to another person. To
handle cases like these, we considered an utterance to be di-
rected toward the computer if any speech within the utterance
is addressed to the computer.
Though this data set satisfies the essential criteria mentioned

above, it is important to point out that there are virtual agents
with more sophisticated capabilities than the computer agent
in our study. For example, DeVault et al. [25] have developed
a full-body virtual human interviewer that tracks the inter-
viewee’s face pose and location, gaze direction, and facial
expression. This additional information allows the agent to
respond in a more sensitive and personal way, which creates
a more natural social interaction. Bohus et al. [26] have also
deployed physical robots in public spaces that engage with one
or more people, engaging in dialogue and giving directions
both verbally and with physical gestures. When interpreting the
conclusions and findings of our study, it will thus be important
to keep in mind the limitations of the computer agent and the
ongoing development of more natural dialogue systems.

B. Data Usage

For our experiments, we divided the utterances into 15 folds,
which correspond to the 15 groups of 4 participants. We used 8
of the folds for training and the other 7 for testing. The training
and test sets had 2001 and 1952 utterances, respectively. Some
features are computed as log likelihood ratios of class-specific
models, and require training data for those models.2 For these
likelihood-ratio features, we were careful to avoid reuse of the
data that could bias the features. When computing likelihood-
ratio features on the training set, we train the utterance class

2These are log likelihood ratios that aggregate a variable number of samples
at the utterance level, and include the lexical n-gram and energy contour features
described in the next subsection.
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models on 7 training folds and used the resulting models to
compute features for the 8th fold. We repeated this in a round-
robin fashion to compute features on all 8 training folds. When
computing likelihood-ratio features on the testing set, we used
models trained on all 8 training folds. This arrangement ensures
that our model-based features are not optimistically biased.

C. Features
We explored five different modalities of features: acoustic,

visual, system, beamforming, and ASR. For each modality, we
describe the features extracted and the intuition behind their de-
sign. The number of features is shown in parentheses.
Acoustic: We extracted three families of acoustic features.

The first family consisted of energy features, i.e., measures of
frame-level energy over various intervals of time (21 features).
Examples include: (1) the average energy during the first
third of the utterance; (2) the maximum frame-level energy
throughout the utterance; and (3) the average energy during the
1-second interval preceding the utterance. The various intervals
include frames up to 3 seconds before and after the utterance.
The intuition behind these features is that people tend to speak
more loudly when addressing the computer, so energy measures
may help discriminate between computer- and human-directed
utterances.
The second family of acoustic features consisted of energy

change features (24 features). These features compute the differ-
ence in energy between two neighboring intervals in time. Ex-
amples include: (1) the difference between the average energy
during the utterance and the average energy during the 2-second
interval after the utterance, and (2) the difference between the
maximum frame-level energy during the first third of the utter-
ance and the maximum frame energy during the 1 second before
the utterance. The intervals span up to 3 seconds before and after
the utterance. The intuition here is that people tend to pause after
speaking to the computer while waiting for the computer’s re-
sponse. Energy change features can simultaneously capture the
elevated volume during the utterance and the pause immediately
afterwards in a computer-directed utterance.
The third family of acoustic features characterize the tem-

poral shape of the speech energy contour (2 features), as first
described by Shriberg et al. [5]. Zeroth and first-order mel fre-
quency cepstral coefficients are computed every 10 millisec-
onds, and the contours of these values over windows of 200
milliseconds are characterized by computing a discrete cosine
transform (DCT) in the temporal domain. The first 5 DCT values
for cepstral coefficient c0 are retained, as are the first 2 DCT
values for c1, resulting in a 7-dimensional feature vector for
every 200 ms window. Shriberg et al. observed that users em-
ploy a more regular rhythmic up-and-down energy pattern when
talking to the computer versus to humans, similar to how one
might talk to a child or linguistically handicapped person, and
this difference in contour shape is captured by the resulting dis-
tributions of DCT values. Note that the other two families of
acoustic features are utterance-level features, while the energy
contours above are computed at a frame level. To arrive at ut-
terance-level features we train two Gaussian mixture models
(GMMs): one to model the feature vectors in human-directed ut-
terances and one for computer-directed utterances. The log like-

lihood ratio computed from these two class-conditioned models
becomes a single utterance-level energy contour feature value,
and is used alongside the other utterance-level features. An al-
ternate version of this feature normalizes the log likelihood by
utterance length, i.e., by the number of frames.
Visual: We extracted three families of visual features. The

first of these is designed to measure the amount of movement
(12 features). The idea here is that people tend to be more
stationary when interacting with the computer than with other
people. Examples of these features include: (1) the variance of
the speaker’s face location; (2) the variance of the speaker’s
face pose angle; and (3) the average variance of all the par-
ticipants’ face locations. We computed these measures over
various intervals up to 3 seconds before and after the utterance.
When we computed features like the variance of the speaker’s
face location, we used ground truth annotations of whom the
speaker is, rather than the system’s estimates. By removing
the uncertainty of the system’s estimate, we can more clearly
discern how important this type of information is, independent
of how robust the speaker identification estimate is. If the
speaker-specific features turn out to be very important, we
should interpret performance numbers as an upper bound,
assuming perfect speaker identification. If the speaker-specific
features turn out not to be important, we can more confidently
conclude that this type of information is not very useful for the
given task.
The second family of visual features is designed to capture

face orientation (11 features). Based on the research reviewed
earlier, a person’s gaze can be a useful indicator of who they
are talking to. We would have liked to use eye-gaze informa-
tion in our study, but this was (and still is) difficult to obtain
at the distances involved. Common eye trackers using a single
camera without mechanical tracking might only be able to ana-
lyze the eyes out to 90 cm [27], which is sufficient for a seated
desktop interface but not nearly far enough for standing inter-
actions. Head pose information is not as accurate an indication
of people’s attention as eye gaze, but still has the potential to
inform an AD system.
Examples of face-orientation features include: (1) the

speaker’s average pose angle in the up/down direction; (2) the
speaker’s average pose angle away from the computer in the
left/right direction; and (3) the fraction of speaker’s pose-angle
estimates that were unavailable. The normalized pose angle
in the second example is a measure that removes the effect
of speaker location. So, regardless of whether the speaker
is standing on the left or right, the normalized angle simply
measure the angle away from the computer. The third example
refers to the fact that face pose estimates cannot be computed
when a person turns their face too far to the side. The fraction
of pose angle estimates that could not be computed can thus
still be a useful indication of face orientation. We compute
these measures over various intervals in time to account for
lags between when speech begins and when the face turns.
The third family of visual features are measures of physical

distance between the participants (18 features). The idea here is
that the distance between two people may be a social signal in-
dicating how comfortable they feel with each other. Two people
who feel uncomfortable around each other will probably stand
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farther apart and will be less likely to have discussions together.
Because depth estimates were not available, we used pixel dis-
tances between participants’ face locations as a proxy. Some
examples of these features include: (1) the distance between the
speaker and the nearest/farthest actor, and (2) the change in dis-
tance between the speaker and nearest/farthest actor over two
neighboring time intervals. To compute a single distance metric
over an interval of time, we considered the minimum, mean, and
maximum of constituent frame-level distance values. As before,
we computed these measures over various intervals of time.
For more detailed information on how the system did face

detection and pose estimation, see the earlier work by Bohus
and Horvitz [24] and corresponding references.
System: System features comprise various indicators of the

system state, including the state of the dialogue manager (6 fea-
tures). The idea here is that the context in which a person speaks
is predictive of his or her lingustic behavior. Some examples of
these features include: (1) the number of participants in the in-
teraction; (2) the time elapsed since computer agent last spoke;
and (3) the dialogue act type of the last computer agent utterance
(question, confirmation, answer, etc.). Note that, unlike most of
the features described earlier, several of the system features are
categorical, rather than numerical, in nature.
Beamforming: The beamforming features include various de-

scriptors of the distribution of beam values, which indicate the
direction of incoming audio (16 features). A wide spread of
beam values suggests that multiple people are talking. In this
way, the distribution of beam values can be an indicator of the
level of discussion or activity among the participants. Examples
of these features include: (1) the variance of beam values; (2) the
range of beam values (i.e., the difference betweenmaximum and
minimum); and (3) the fraction of beam values falling within a
certain range. Again, we computed these measures over various
time intervals.
ASR: We extracted two families of ASR features. The first

of these model lexical n-grams (2 features) in the same way
as described by Shriberg et al. [5], [7]. We trained two max-
imum-entropy trigram language models: one model for com-
puter-directed utterances and another for human-directed utter-
ances. Similar to the energy-contour features, we computed the
log likelihood ratio from these two models to get a single ut-
terance-level feature value. An alternate version of this feature
normalizes the log likelihood by the number of words in the ut-
terance. The intuition behind the n-grammodeling is that people
tend to use different words, phrases, and syntactic patterns de-
pending on who they are addressing.
The second family of ASR features describes various proper-

ties of the hypotheses generated by the speech recognition en-
gine (5 features). These include: (1) the duration of the utter-
ance; (2) the confidence of the top hypothesis; (3) the number
of hypotheses; and (4) the number of words in the top (or all) hy-
potheses. Classifying utterances based on ASR confidence cap-
italizes on the fact that human-directed speech tends to be less
well-matched to the recognizer’s acoustic and language models
than computer-directed utterances.
Feature Summary: In total, we extracted 117 different

features. Table I shows a breakdown of the feature count by
modality.

TABLE I
BREAKDOWN OF FEATURE COUNT BY MODALITY

Computational Complexity: Ameaningful discussion of com-
putational complexity must discuss the marginal cost of com-
puting AD features. AD is not very useful in isolation, but is
used in conjunction with other system components. It can thus
reuse a lot of the work that is necessary for other system com-
ponents. For example, a dialogue system by its very nature must
compute an auditory spectrogram and perform ASR. So, the
marginal cost of the acoustic AD features consists of (1) com-
puting average energy across various intervals of time, which
can be done very efficiently using an integral representation of
frame energy (e.g. [28]), and (2) computing two discrete co-
sine transforms every 200 ms for the energy contour features.
The marginal cost of the lexical AD features is computing the
log likelihood ratio between two language models for the hy-
pothesized word sequence. The marginal cost of the visual AD
features is computing simple statistics such as average or vari-
ance across a set of face locations, head pose estimates, or dis-
tances between faces. Note that in our experimental setup, most
of the heavy visual processing (i.e. face detection and pose esti-
mation) has already been done by the dialogue system, though
an audio-only dialogue system would incur a very heavy mar-
ginal cost in computing visual features for AD. The marginal
cost for beamforming features is likewise computing simple sta-
tistics across the beam estimates in each utterance. The mar-
ginal costs for other features not explicitly mentioned above are
trivial, such as accessing system state information or using the
confidence of the top ASR hypothesis.
Implementation: The ASR, face detection, and face pose esti-

mates were done in real-time during the actual interactions. We
then extracted the necessary information from log files, carried
out the “marginal” processing described above, and conducted
our AD experiments in an offline manner. Even though our im-
plementation was entirely offline, it is useful to point out that the
marginal costs described above are relatively small, and could
easily be performed in real-time. However, note that some fea-
tures incorporate context outside of the duration of the utterance
itself, including up to 3 seconds after the utterance ends. These
features would require a delay in processing, and would prob-
ably not be acceptable for use in a real-time system. However,
it will be useful to know if the context after an utterance ends
provides useful information in predicting addressee. We will in-
vestigate this in Section V-C.

D. Fusion

There are many different methods of combining informa-
tion from multiple modalities. As Atrey et al. point out in their
survey of multimodal fusion strategies [29], two key choices
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are the level of fusion and the method of fusion.3 The level
of fusion can be at the feature level (early fusion), the deci-
sion level (late fusion), or a combination or blend of both. The
method of fusion can be rule-based, classification-based, or es-
timation-based. Much of the recent work in classification-based
fusion methods have explored fusing representations within a
deep belief network or deep Boltzmann machine [31]–[34], or
combining the benefits of generative and discriminative models
in a hybrid architecture [35].
In this work, we adopt a similar approach to Perez-Rosas [36],

in that we perform early fusion and compare the performance of
various subsets of features. We have selected this methodology
for two main reasons. First, because of the limited amount of
labeled training data, we prefer a simple architecture so as not
to introduce too many parameters. Second, because one of our
main goals is to understand and analyze the relative importance
of various features, we prefer an architecture that facilitates a
straightforward analysis of feature importance. For these two
reasons, we adopt a simple early-fusion methodology.

E. Classifiers
We experimented with four different types of classifiers: lo-

gistic regression, decision tree, random forest, and Adaboost
with tree stumps. Logistic regression models the probability of
a binary outcome as a function of the features using a linear
logistic function [37]. Decision trees recursively partition the
data to minimize some measure of node impurity, and they as-
sign each partition a categorical or numerical prediction [38].
Random forest is an ensemble-learning method, which differs
from decision trees in two ways: (1) it trains multiple decision
trees, each based on a bootstrap sample of the data, and (2) each
decision tree is grown using a modified tree learning algorithm
that selects a random subset of features at each candidate split
[39]. Adaboost is a meta-algorithm for combining the predic-
tions of a set of weak learners, where each subsequent weak
learner is selected to address the mistakes of previous classi-
fiers [40].
We experimented with both classification trees and regres-

sion trees, and we found that regression trees have slightly better
performance, both for the single tree classifier and the random
forest model. We report only the results with regression trees in
this work.We also tried Adaboost with trees of greater depth but
found the results to be no better. We only report the results with
tree stumps. For the random forest and Adaboost models, we
selected the number of trees to ensure convergence. We will in-
vestigate the performance of these classifiers in the next section.

F. Evaluation
We evaluate models, features, and modalities using method-

ology commonly used for detection tasks. A good way to vi-
sualize the performance of a detection system is to plot its de-
tection-error-tradeoff (DET) curve [41]. The DET curve shows
the tradeoff between the false alarm rate (on the x-axis) and the
missed detection rate (on the y-axis). Both axes use a normal
deviate scale to achieve a roughly linear plot shape. Sometimes
it is more convenient to express system performance in a single

3This provides one perspective on multimodal fusion strategies. The survey
paper by Lalanne et al. [30] provides another perspective.

Fig. 2. Equal error rates of all four classifiers when adding more and more
feature modalities. The leftmost column shows the performance with only the
most important feature modality (acoustic), and the rightmost column shows the
performance with all five feature modalities.

number, especially when comparing several systems and when
the DET curves run roughly in parallel. In that case we use equal
error rate (EER), which refers to the point on the DET curve
where the false alarm and missed detection rates are equal. Im-
portantly, the EER is invariant to changing class priors, and also
equals the overall classification error rate at the corresponding
operating point. Statistical significance of EER differences is
assessed using a McNemar (matched pairs) test, as described
in [42] (see Section II-C4). Also note that a system outputting
random decisions would have an EER of 50%.

IV. RESULTS

In this section we report overall performance of our mul-
timodal system for the different classifiers, as well as perfor-
mance of subsets of the modalities.

A. Performance With All Classifiers

First we show the overall results of all four classifiers and
the benefit of using multiple modalities. Fig. 2 shows the EER
for the four classifiers when they are incrementally provided
with more and more modalities, where the modalities are added
in order of their individual performance. So, for example, the
leftmost group of bars shows the performance when only the
acoustic modality is available, and the rightmost group of bars
show the performance of the classifiers when all five modalities
are used. This plot shows a system designer how much mar-
ginal benefit will be gained at each step by adding the next most
important modality. We will justify this particular ordering of
modalities in section 5B, but we defer this discussion in order
to present the overall results as concisely as possible. For now,
we simply point out that the ordering of modalities is acoustic
(most important), ASR, system, visual, and beamforming (least
important).
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Fig. 3. DET curves showing the incremental improvement by modality for the
Adaboost classifier. The order of modalities is acoustic (most important), ASR,
system, visual, and beamforming (least important). Each curve shows the per-
formance when features from the top N modalities are used.

There are three observations to make about Fig. 2. First, there
is significant improvement by including multiple modalities.
For example, the Adaboost classifier improves its EER from
13.9% with one modality to 9.8% with all five modalities. With
the random forest classifier, the EER improves from 14.5% to
9.9%. Second, the ensemble classifiers (random forest and Ad-
aboost) show more robustness to overfitting on the modality
level. We can clearly see that the regression tree shows over-
fitting beyond the top three modalities. Just as it is possible to
overfit the data with features, we see a similar phenomenon of
overfitting with modalities. In this case, using more modalities
adds more noise than useful information. In contrast, the en-
semble classifiers show consistent but diminishing gains. One
of the benefits of ensemble methods is that they tend to be more
robust to overfitting. Third, the general ordering of classifiers
by performance is Adaboost (best), random forest, logistic re-
gression, and then regression tree (worst). We can see that the
regression tree is consistently the worst. Logistic regression and
random forest both perform fairly well, but are not as consistent.
Adaboost has the most consistent and competitive performance.
For this reason, we focus our attention on the Adaboost model
in the remainder of our analyses.

B. Performance of Best Classifier

Next we examine more closely the performance of our best-
performing classifier: Adaboost. Whereas EER reflects the per-
formance of a system at a single operating point, DET curves
characterize the performance across a whole range of operating
points. Fig. 3 shows the DET curves for the Adaboost classifier
when incrementally adding modalities, again in order of their
individual performance. These five DET curves show the full
performance characteristic for the rightmost bar in each group
in Fig. 2.
We highlight two observations about Fig. 3. First, adding

more modalities yields increasingly smaller gains. Only the top

three modalities (acoustic, ASR, system) yield statistically sig-
nificant incremental improvements in EER at a level of
significance. In this case, it may not be worth the effort to com-
pute visual features for marginal gains. We often see the law
of diminishing returns when combining features and combining
systems, and here we see diminishing returns with combining
modalities as well. Second, the performance of the system with
the single best modality (acoustic) has very poor performance
in the low false-alarm region. Note that all 5 DET curves have
roughly converged in performance for low miss rates ( ),
but that the systemwith only onemodality has much higher miss
rate for low false alarms. Here, we are detecting computer-di-
rected utterances, so a low false-alarm rate means that we want
to keep human-directed speech from the system. In these sce-
narios, including 2 or more modalities significantly improves
system performance.
Overall, we can summarize the benefit of multimodal ad-

dressee detection as follows. The best-performing classifier
reduces the EER from 13.9% with the single best modality
(acoustic features only) to 9.8% with all five feature modalities.
Beyond the top three modalities (acoustic, ASR, system), using
additional modalities yields little to no benefit.

V. ANALYSIS

In this section we investigate which features and modalities
contribute most to overall performance. We will start by as-
sessing the importance of individual features, and then turn our
attention to the importance of modalities in aggregate. For these
analyses, we again focus on our single best-performing classi-
fier, Adaboost.

A. Importance of Individual Features
For any classifier architecture it is not always clear how

to quantify the importance of individual features. One useful
metric in the case of Adaboost is the concept of relative influ-
ence [43], [39]. Relative influence is the reduction in the loss
function attributable to a single feature, normalized by the total
reduction in loss due to all features. This measure indicates how
much an individual feature influences the Adaboost prediction.
So, a feature with 0% relative influence does not affect the
ensemble prediction at all, while a feature with 100% relative
influence would deterministically control the prediction.
Fig. 4 shows the relative influence of the top 30 features in the

Adaboost model, sorted in decreasing order. These top 30 fea-
tures account for more than 95% of the total relative influence.
The names of the features have been color coded by modality
for ease of interpretation.
Perhaps the most enlightening thing we can do is to simply

look at what the 10 most influential features are. These 10 fea-
tures make up more than 80% of the total relative influence.
Here, we explain what the features are, as follows:
1) log likelihood ratio of two energy contour GMMs;
2) log likelihood ratio of two language models;
3) log likelihood ratio of two energy contour GMMs, normal-

ized by the length of audio;
4) confidence of top ASR hypothesis;
5) average energy during the utterance minus the average en-

ergy during the 1 sec interval after the utterance;



TSAI et al.: STUDY OF MULTIMODAL ADDRESSEE DETECTION IN H-H-C INTERACTION 1557

Fig. 4. Relative influence of top 30 features in Adaboost model. The names
of the features have been color coded by modality for ease of reference. The
modality is also indicated by the first letter of the feature name for those reading
in black and white ( , ).

6) dialogue act type of the last computer agent speech (ques-
tion, confirmation, answer, etc.);

7) time elapsed since the last computer agent speech;
8) average energy during utterance;
9) max frame-level energy during utterance; and
10) log average energy during utterance.
Looking at the list of top 10 features above, we can make

a few observations. First, acoustic features dominate. Six of the
top 10 features are related to acoustic energy. Second, ASR con-
tributes in the form of n-gram likelihood ratios and confidence
score. Third, context helps. Some of the top 10 features have to
do with what or when the computer agent last spoke, or the en-
ergy level immediately after the utterance. These features cap-
ture information outside of the time interval in which the utter-
ance was actually spoken. And finally, no beamforming or vi-
sual features appear in the top 10 feature list. This suggests that
these modalities are much less useful for this task, confirming
the results from Section IV. It may seem surprising that visual
features such as face-pose angle are not very important, and we
will explain the main reasons for this in the discussion section.
Finally we note that the three most important features are the

model-based prosodic and lexical features that were found to be
highly effective in recent work by Shriberg et al. [5], [7]. The
fact that these features perform similarly here, on an entirely
different data set, motivates examining the marginal benefit of
other modalities when added to the acoustic and ASR-based
features.4

B. Importance of Different Modalities

In addition to knowing the relative importance of individual
features, we would also like to know the relative importance of

4The results obtained here with energy contour features alone (about 19%
EER, cf. Table II), are remarkably close to the 17% EER obtained on the corpus
used in [7].

Fig. 5. Relative influence of all 117 features in the Adaboost model. The fea-
tures are grouped first by modality, then in decreasing order of influence.

Fig. 6. Equal error rates of systems when only one feature modality is used.

different modalities. We will approach this using three different
methods.
The first approach is to visualize the importance of individual

features when grouped bymodality. Fig. 5 shows the relative in-
fluence of all 117 features in our Adaboost model, grouped by
modality. Within each grouping, the features are sorted in de-
creasing order of relative influence. A brief glance at this figure
immediately reveals the major trends among the various modal-
ities: The top several acoustic features dominate. The top few
ASR and system features are useful. The rest don’t seem to con-
tribute much. Note that the ordering of modalities suggested by
Fig. 5 matches the ordering in Fig. 3.
The second approach is to run full end-to-end experiments

using one feature modality at a time. These experiments reveal
how well we can do addressee detection when only using infor-
mation from a single modality. Fig. 6 shows a barplot of EERs
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Fig. 7. Equal error rates of systems when one feature modality is removed.

for our leave-one-group-in experiments. The leftmost group of
bars shows the performance when all feature modalities are
used, as a reference.
There are several things to notice in Fig. 6. The group EER

increases as we go from left to right. This trend holds true re-
gardless of the classifier. This suggests that the order of im-
portance among the various modalities is acoustic (most im-
portant), ASR, system, visual, and beamforming (least impor-
tant). Also, using multiple modalities helps substantially. The
leftmost group of bars is much lower than any other group of
bars. No matter which single modality you pick, there is signif-
icant benefit to using multiple modalities. Again, note that the
ordering of modalities suggested by Fig. 6 matches the ordering
in Fig. 3.
The third approach is to run full end-to-end experiments

omitting one group of features at a time. These experiments
will reveal how much removing a particular modality from the
full multimodal system negatively affects system performance.
Fig. 7 shows a barplot of EERs for our leave-one-group-out
experiments. The rightmost group of bars shows the perfor-
mance of the full multimodal feature set, as a reference. Since
we are measuring the effect of removing a modality, a higher
EER indicates that the modality is more important. Higher bars
mean greater importance.
Fig. 7 generally supports our other findings. The results get

much worse when we remove acoustic features, suggesting that
they are very important. The results are somewhat worse when
we remove ASR or system features, suggesting that they are
moderately important. The results are not negatively affected
much when we remove the visual or beamforming features. In
fact, the results actually get better in some cases due to over-
fitting with the regression tree. This suggests that these feature
modalities are not very important. For our Adaboost model, only
leaving out energy or ASR features yielded a statistically sig-
nificant increase in EER at a level of significance,
and leaving out system features yielded a statistically signifi-
cant increase at a level of significance. Importantly,

TABLE II
EQUAL ERROR RATES (IN%) OF ADABOOST MODEL WHEN WE STRIP AWAY
ABSOLUTE ENERGY INFORMATION. THE TWO MIDDLE COLUMNS SHOW
THE RESULTS WHEN WE LEAVE ONE FEATURE MODALITY IN OR TAKE
ONE FEATURE MODALITY OUT. THE RIGHTMOST COLUMN SHOWS
THE RESULTS OF INCREMENTALLY ADDING FEATURE MODALITIES

FROM TOP TO BOTTOM

leave-one-in and leave-one-out experiments arrive at the same
ordering of modalities, which justifies the ordering of impor-
tance used in Section IV.
Putting all our analysis experiments together, we can char-

acterize the relative importance of the individual modalities as
follows: Acoustic features are extremely important. ASR and
system features have medium importance. Visual and beam-
forming features have little to no importance.

C. Additional Analyses

We have seen that acoustic energy-based features are very im-
portant in predicting addressee for the given experimental setup.
With a view toward generality and future applications, we may
not want our addressee detection system to depend on the users
speaking more loudly when addressing the system. This depen-
dence on differing vocal effort is an artifact of the computer
agent’s limited capabilities, and may be a barrier to more nat-
ural interaction with the agent. We therefore tried to determine
how our system would perform if we removed dependence on
utterance-level energy. This analysis anticipates the ongoing de-
velopment of dialogue systems which allow humans to speak to
the system in a more natural manner. To this end, we repeated
several of the above experiments and analyses, but excluding
features that depend on absolute energy levels. We also modi-
fied the energy contour models to omit the first DCT value de-
scribing c0 energy. This effectively removes all of the acoustic
features except those that model speaking style as expressed by
utterance-internal energy variation [5].
Table II shows the EERs of the Adaboost model without abso-

lute energy information. The second column shows the system
performance when only a single feature modality is used. The
third column shows the system performance when a single fea-
ture modality is omitted. The rightmost column shows the re-
sults of incrementally adding feature modalities from top to
bottom. So, the top entry refers to using ASR features only,
and the bottom entry refers to using all five feature modalities.
The result in the bottom row, right-most column has the perfor-
mance with all five modalities, and therefore serves as a refer-
ence point. The numbers in Table II show a significant drop in
performance compared to the systemwith absolute energy infor-
mation. For example, with only acoustic features, the EER in-
creases from 13.9% (“top1modalities” curve in Fig. 3) to 19.2%
(acoustic only in Table II), a relative change of 38%. Similarly,
with all modalities, the EER increases from 9.8% (“top5modal-
ities” curve in Fig. 3) to 14.0% (bottom right entry of Table II),
a relative change of 43%.
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Several additional observations should be noted. First, the
leave-one-group-in experiments suggest the same ordering of
modalities as before, except that acoustic features have fallen
from being most important to being second in importance be-
hind ASR features. Second, ASR and acoustic features as a
group (both based on audio input) remain dominant. The leave-
one-in and leave-one-out experiments indicate that these two
modalities are dominant in importance compared to the other
three modalities. Only these two modalities yield statistically
significant changes to EER at a level of significance in
the leave-one-out experiments. Similarly, only these twomodal-
ities yield statistically significant incremental improvement to
EER at a level of significance in the incremental-
by-modality experiments. Third, the visual and beamforming
modalities seem to contribute more when absolute energy in-
formation is stripped away. Whereas before these two modali-
ties did not benefit system performance almost at all, here we
see that they play a more important role when either omitted or
added incrementally.
Another question of interest is to determine how useful it is to

consider the context after an utterance is spoken. As described
earlier, several of our features look at intervals of time up to
3 seconds after an utterance is spoken. Are these features ac-
tually useful? When we look at the Adaboost model with the
full set of 117 multimodal features, we find that the 30 features
which use post-utterance information constitute about 9.4% of
the total relative influence. Of these 30 features, 7 consider time
intervals up to 1 second after the utterance ends, and these 7 fea-
tures constitute 6.4% of the total relative influence, more than
of the post-utterance combined influence. So, it seems that

there is some useful information contained in the interval after
an utterance is spoken, but most of this information is concen-
trated in the interval immediately after the utterance ends. We
can also verify this hypothesis by observing the effect of re-
moving post-utterance features.Whenwe remove all 30 post-ut-
terance features, the EER of the Adaboost classifier increases
from 9.8% to 10.5%. However, when we remove only the 23
features not contained in the “utterance + 1 sec” subset, the
EER only increases from 9.8% to 9.9%. This result is useful,
since it suggests that significant performance benefits may be
gained from limited post-utterance information, while still op-
erating within a real-time, low-latency scenario. A half-second
or one-second delay may be acceptable in many real-time ap-
plications, whereas a 3-second delay would almost certainly be
unacceptable.

D. Discussion

The fact that visual features were not very important may
seem surprising. Because it is such an important cue in H-H in-
teractions, one would naturally assume that it would be an im-
portant cue in H-H-C interactions as well. The main reason for
this result is that the computer was a major situational attractor:
people continued looking at the screen even when they were
talking amongst themselves, a phenomenon that has been ob-
served and studied in social psychology [44]. For the given sce-
nario, we can characterize the face orientation as “necessary but
not sufficient.” In other words, if a person is not looking at the
computer, they are almost certainly not addressing the system.

Fig. 8. Distribution of left-right head pose angle of speaker, separated by
speaker location and intended addressee. This only includes data for which
there is a single speaker and single addressee, and the speaker is located on the
left or the right (not in the center).

But if a person is looking at the computer, they may or may not
be addressing the system. Because people’s default face orien-
tation for this task was towards the computer, face pose pro-
vides little useful information. The strength of a situational at-
tractor may vary widely depending on the context, but the gen-
eral phenomenon has been observed in other studies [17], [18].
Another contributing factor is that the face-pose estimates were
not robust enough to be useful. The pose estimates were fairly
noisy and could only track face angles within a limited range.
We can take measures to partially compensate for these short-
comings (such as measuring the fraction of time that pose esti-
mates are unavailable), but they did not seem to provide enough
reliable information to be useful. In some instances, however,
head pose angle might be useful. Fig. 8 shows the distribution
of the speaker’s head pose angle in the left-right direction for
the subset of training data satisfying all of the following condi-
tions: (1) there is a single speaker, (2) there is a single intended
addressee, and (3) the speaker is located on the left or right side
(not in the center). We can see that there is some separation in
the distributions that might be exploited if we partition the data
according to appropriate criteria.
Some of the most important features are features that we may

not want to rely upon. Acoustic energy was a very important
source of information in our data set, but it relies on the fact that
people speak differently to a computer than to another person.
As conversational systems become more and more natural, we
may not want to rely on people speaking in a distinctly different
manner towards computers. Similarly, ASR confidence was a
very useful feature, but is highly sensitive to the acoustic en-
vironment, language model coverage, nonnative accents, and
other incidental factors affecting the recognition system.
Features describing context should be explored in more

depth. We saw that what the computer agent last said and when
the computer agent last spoke are useful indicators. We also
saw that features describing the time intervals immediately
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after the utterance were informative. These features all describe
the context in which the utterance is spoken. Dialogue context
is also readily and reliably available to the system, especially
since much of it is produced by the system itself (such as
the dialogue act or display contents last generated). Context
features are therefore attractive to use for addressee detection,
and merit further exploration. One potential drawback is that
they are highly specific to the system task, i.e., it would hard to
incorporate them in a general way in a “black box” addressee
detector, at least without retraining and calibration of the
overall system. It might be possible to develop a descriptive
schema for dialogue context that generalizes across systems
and allows sharing of training data, which would facilitate the
development of new H-H-C systems.

VI. CONCLUSION

We have proposed a multimodal addressee-detection system
that uses acoustic, visual, system state, beamforming, and
ASR information. Using data from a multiparty dialogue sce-
nario, we assess its performance and determine which types
of information are most useful in predicting addressee. We
find that acoustic information is most useful, dominating the
other modalities in importance. Lexical and dialogue state
information are also useful, providing significant performance
gains. Visual and beamforming information provide little to
no additional benefit. Our findings are relevant to multiparty,
open-world dialogue systems in which a computer agent plays
an active role in structuring the conversation. For these situ-
ations, our experiments suggest that audio-based information
(both prosodic and lexical) and system state information are
a good combination of modalities to use, providing a good
balance between performance and economy of implementation.
Our analyses also suggest that as dialogue systems become
more and more natural, the acoustic information will become
less dominant, though still important, while the other modalities
will increase in relative importance.
There are two primary avenues for future work. The first

is to explore a richer set of features that describe the context
in which a person speaks–what the user is responding to and
how their response fits into the larger, overarching interaction.
The second avenue is to collect a rich multimodal data set in
a human-human-computer scenario where the user is the ac-
tive initiator, rather than the computer. Such a data set with ad-
dressee annotations would enable further study on how to design
effective and general automatic addressee detection systems.
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