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Abstract 

This chapter describes several probabilistic techniques for representing, 
recognizing, and generating spatiotemporal configuration sequences. We 
first describe how such techniques can be used to visually track and 
recognize lip movements to augment a speech recognition system. We 
then demonstrate additional techniques that can be used to animate 
video footage of talking faces and synchronize it to different sentences of 
an audio track. Finally we outline alternative low-level representations 
that are needed to apply these techniques to articulated body gestures. 

15.1 Introduction 

Gestures can be described as characteristic configurations over time. 
While uttering a sentence, we express very fine grained verbal gestures 
as complex lip configurations over time, and while performing bodily 
actions, we generate articulated configuration sequences of jointed arm 
and leg segments. Such configurations lie in constrained subspaces and 
different gesture~ are embodied as different characteristic trajectories in 
these constrained subspaces. 

We present a general technique called Manifold Learning, that is able 
to estimate such constrained subspaces from example data. This tech­
nique is applied to the domain of tracking, recognition, and interpola­
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tion. Characteristic trajectories through such spaces are estimated using 
Hidden Markov Models. We show the utility of these techniques on the 
domain of visual acoustic recognition of continuous spelled letters. 

We also show how visual acoustic lip and facial feature models can 
be used for the inverse task: facial animation. For this domain we 
developed a modified tracking technique and a different lip interpolation 
technique, as well as a more general decomposition of visual speech units 
based on Visemes. We apply these techniques to stock-footage of a 
Marilyn Monroe scene and a news cast, where our technique is able to 
automatically modify a given utterance to a new sentence. 

The models of verbal gestures that we use in the lip recognition and 
facial animation domain use low-level appearance-based and geometric 
representations. Lips and faces produce a relative constrained set of 
such features, which can be learned from data. In contrast, articulated 
objects, like hand and full body configurations, produce a much more 
complex set of image and geometric features. Constrained subspaces and 
sequences could be learned at higher levels of abstractions. Lower level 
representations should be based on much weaker and general constraints. 
'vVe describe extensions to our gesture recognition approach that employ 
such low-level probabilistic constraints to image sequences of articulated 
gestures, and we outline how these new techniques can be incorporated 
into high-level manifold and HMM based representations. 

Section 15.2 describes the constrained manifold representation using 
a mixture model of linear patches and a maximum likelihood estima­
tion technique. Section 15.3 demonstrates an application to constrained 
tracking, and Section 15.4 describes a system that learns visual acous­
tic speech models for recognizing continuous speech. In Section 15.5 we 
briefly outline how to use the constrained space to interpolate lip images 
and in Section 15.6 we introduce a new set of techniques on how to use 
visual acoustic models for the inverse task of facial animation. Section 
15.7 outlines the alternative low-level representations and how we plan 
to apply this to probabilistic gesture models of human body actions. 

15.2 Constrained Lip Configuration Space 

Human lips are geometrically complex shapes which smoothly vary with 
the multiple degrees of freedom of the facial musculature of a speaker. 
For recognition, we would like to extract information about these degrees 
of freedom from images. We represent a single configuration of the lips as 
a point in a feature space. The set of all configurations that a speaker 
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may exhibit then defines a smooth surface in the feature space. In 
differential geometry, such smooth surfaces are called "manifolds". 

For example, as a speaker opens her lips, the corresponding point in 
the lip feature space will move along a smooth curve. If the orientation 
of the lips is changed, then the configuration point moves along a dif­
ferent curve in the feature space. If both the degree of openness and 
the orientation vary, then a two-dimensional surface will be described 
in the feature space. The dimension of the "lip" surface is the same as 
the number of degrees of freedom of the lips. This includes both intrin­
sic degrees of freedom due to the musculature and external degrees of 
freedom which represent properties of the viewing conditions. 

We would like to learn the lip manifold from examples and to perform 
the computations on it that are required for recognition. We abstract 
this problem as the "manifold learning problem": given a set of points 
drawn from a smooth manifold in a space, induce the dimension and 
structure of the manifold. 

There are several operations we would like the surface representation 
to support. Perhaps the most important for recognition is the "near­
est point" query: return the point on the surface which is closest to a 
specified query point (Fig. l5.la). This task arises in any recognition 
context where the entities to be recognized are smoothly parameterized 
(e.g., objects which may be rotated, scaled, etc.) There is one surface for 
each class which represents the feature values as the various parameters 
are varied [233]. Under a distance-based noise model, the best classifi­
cation choice for recognition will be to choose the class of the surface 
whose closest point is nearest the query point. The chosen surface de­
termines the class of the recognized entity and the closest point gives 
the best estimate for values of the parameters within that class. The 
same query arises in several other contexts in our system. The surface 
representation should therefore support it efficiently. 

Other important classes of queries are "interpolation queries" and 
"prediction queries". Two or more points on a curve are specified and 
the system must interpolate between them or extrapolate beyond them. 
Knowledge of the constraint surface can dramatically improve perfor­
mance over "knowledge-free" approaches like linear or spline interpola­
tion. (Fig. l5.lb) 
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Fig. 15.1 Surface tasks a) closest point query, b) interpolation and prediction. 

15.2.1 Mixtures of Local Patches 

We present a manifold representation based on the closest point query 
[60]. If the data points were drawn from a linear manifold, then we could 
represent it by a point on the surface and a projection matrix. After 
the specified point is translated to the origin, the projection matrix 
would project any vector orthogonally into the linear subspace. Given a 
set of points drawn from such a linear surface, a principal components 
analysis could be used to discover its dimension and to find the least­
squares best fit projection matrix. The largest principal vectors would 
span the space and there would be a precipitous drop in the principle 
values at the dimension of the surface (this is similar to approaches 
described [181, 301, 284]). A principal components analysis no longer 
suffices, however, when the manifold is nonlinear because even a one­
dimensional nonlinear curve can span all the dimensions of a space. 

If a nonlinear manifold is smooth, however, then each local piece looks 
more and more linear under magnification. Surface data points from a 
small local neighborhood will be well-approximated by a linear patch. 
Their principal values can be used to determine the most likely dimen­
sion of the patch. We take that number of the largest principal compo­
nents to approximate the tangent space of the surface. The idea behind 
our representations is to "glue" such local linear patches together using 
a partition of unity. 

The manifold is represented as a mapping from the embedding space 
to itself which takes each point to the nearest point on the manifold. K­
means clustering is used to determine an initial set of "prototype centers" 
from the data points. A principal components analysis is performed on a 
specified number of the nearest neighbors of each prototype point. These 
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Fig, 15.2. Lip contour coding 

"local PCA" results are used to estimate the dimension of the manifold 
and to find the best linear projection in the neighborhood of prototype i. 
The influence of these local models is determined by Gaussians centered 
on the prototype location with a variance determined by the local sample 
density. The projection onto the manifold is determined by forming a 
partition of unity from these Gaussians and using it to form a convex 
linear combination of the local linear projections: 

(15.1) 

This initial model is then refined to minimize the mean squared error 
between the training samples and the nearest surface point using EM 
optimization [105]. We have demonstrated the excellent performance 
of this approach on synthetic examples [59]. A related mixture model 
approach applied to input-output mappings appears in [163]. 

15.3 Constrained Tracking 

To track the position ofthe lips we integrate the manifold representation 
with an "Active Contour" technique [172, 337, 195, 40]. In each image, 
a contour shape is matched to the boundary of the lips. The space 
of contours that represent lips is represented by a learned lip-contour­
manifold. During tracking we try to find the contour (manifold-point) 
which maximizes the graylevel gradients along the contour in the image. 

The boundary shape is parameterized by the x and y coordinates of 
40 evenly spaced points along the contour. The left corner of the lip 
boundary is anchored at (0,0) and all values are normalized to give a 
lip width of 1 (Fig 15.2). Each lip contour is therefore a point in an 
80-dimensional "contour-space" (because of anchoring and scaling it is 
actually only a 77-dimensional space). 
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Fig. 15.3 Active contours for finding the lip contours: (a) a correctly placed 
snake; (b) a snake which has gotten stuck in a local minimum of the simple 
energy function. 
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Fig. 15.4 Two principle axes in a local patch in lip space: a, b, and care 
configurations along the first principle axis, while d, e, and f are along the third 
aXIS. 

The training set consists of 4500 images of 6 speakers uttering random 
words. The training images are initially labeled with a conventional 
snake algorithm. The standard snake approach chooses a curve by trying 
to maximize its smoothness while also adapting to certain image features 
along its length. These criteria are encoded in an energy function and 
the snake is optimized by gradient descent. Unfortunately, this approach 
sometimes causes the selection of incorrect regions (Fig. 15.3). We cull 
the incorrectly aligned snakes from the databa..')e by hand. 

We then apply the manifold learning technique described above to 
the database of correctly aligned lip snakes. The algorithm learns a 
5-dimensional manifold embedded in the SO-dimensional contour space. 
5 dimensions were sufficient to describe the contours with single pixel 
accuracy in the image. Figure 15.4 shows some of the lip models along 
two of the principal axes in the local neighborhood of one of the patches. 

The tracking algorithm starts with a crude initial estimate of the lip 
position and size. In our training database all subjects positioned them­
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Fig. 15.5. A typical relaxation and tracking sequence of our lip tracker 

selves at similar locations in front of the camera. The initial estimate 
is not crucial to our approach as we explain later. Currently work is in 
progress to integrate a full face finder, which will allow us to estimate 
the lip location and size without even knowing the rough position of the 
subject. 

Given the initial location and size estimate, we backproject an initial 
lip contour from the lip-manifold back to the image (we choose the mean 
of one of the linear local patches). At each of the 40 points along the 
backprojected contour we estimate the magnitude of the graylevel gra­
dient in the direction perpendicular to the contour. The sum of all 40 
gradients would be maximal if the contour were perfectly aligned with 
the lip boundary. We iteratively maximize this term by performing a 
gradient ascent search over the 40 local coordinates. After each step, we 
anchor and normalize the new coordinates to the BO-dimensional shape 
space and project it back into the lip-manifold. This constrains the 
gradient ascent search to only to consider legal lip-shapes. The search 
moves the lip-manifold point in the direction which maximally increases 
the sum of directed graylevel gradients. The initial guess only has to 
be roughly right because the first few iterations use big enough image 
filters that the contour is attracted even far from the correct boundary. 

The lip contour searches in successive images in the video sequence are 
started with the contour found from the previous image. Additionally 
we add a temporal term to the gradient ascent energy function which 
forces the temporal second derivatives of the contour coordinates to be 
small. Figure 15.5 shows an example gradient ascent for a starting image 
and the contours found in successive images. 

15.4 Learning and Recognizing Temporal Lip Configuration 
Sequences with Hidden Markov Models 

In initial experiments we directly used the contour coding as the input 
to the recognition Hidden Markov Models, but found that the outer 
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boundary of the lips is not distinctive enough to give reasonable recog­
nition performance. The inner lip-contour and the appearance of teeth 
and tongue are important for recognition. These features are not very 
robust for lip tracking, however, because they disappear frequently when 
the lips close. For this reason the recognition features we use consist of 
the components of a graylevel matrix positioned and sized at the lo­
cation found by the contour based lip-tracker. Empirically we found 
that a matrix of 24x16 pixels is enough to distinguish all possible lip 
configurations. Each pixel of the 24x16 matrix is assigned the average 
graylevel of a corresponding small window in the image. The size of the 
window is dependent of the size of the found contour. Because a 24x16 
graylevel matrix is equal to a 384-dimensional vector, we also reduce the 
dimension of the recognition feature space by projecting the vectors to 
a linear subspace determined by a principal components analysis. 

15.4.1 One Speaker, Pure Visual Recognition 

The simplest of our experiments is based on a small speaker dependent 
task, the "bartender" problem. The speaker may choose between 4 dif­
ferent cocktail namest, but the bartender cannot hear due to background 
noise. The cocktail must be chosen purely by lipreading. A subject ut­
tered each of the 4 words, 23 times. An HMM was trained for each 
of the 4 words using a mixture of Gaussians to represent the emission 
probabilities. With a test set of 22 utterances, the system made only 
one error (4.5% error). 

This task is artificially simple, because the vocabulary is very small, 
the system is speaker dependent, and it does not deal with continuous 
or spontaneous speech. These are all state-of-the-art problems in the 
speech recognition community. For pure lip reading, however, the per­
formance of this system is sufficiently high to warrant reporting here. 
The following sections describe more state-of-the-art tasks using a sys­
tem based on combined acoustic and visual modalities. 

15.4.2 Acoustic Processing and Sensor Fusion 

For the acoustic preprocessing we use an off-the-shelf acoustic front-end 
system, called RASTA-PLP [148] which extracts feature vectors from the 
digitized acoustic data with a constant rate of 100 frames per second. 

t 	We choose the words: "anchorsteam", "bacardi", "coffee", and "tequilla". Ea.ch 
word takes about 1 second to utter on average. 
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Psychological studies have shown that human subjects combine acous­
tic and visual information at a rather high feature level. This supports 
a perceptual model that posits conditional independence between the 
two speech modalities [223]. We believe, however, that such conditional 
independence cannot· be applied to a speech recognition system that 
combines modalities on the phoneme/viseme level. Visual and acoustic 
speech vectors are conditionally independent given the vocal tract posi­
tion, but not given the phoneme class. Our experiments have shown that 
combining modalities at the input level of the speech recognizer produces 
much higher performance than combining them on higher levels. 

15.4.3 Multi-Speaker Visual-Acoustic Recognition 

In this experiment, the aim is to use the the visual lipreading system 
to improve the performance of acoustic speech recognition. We focus 
on scenarios where the acoustic signal is distorted by background noise 
or crosstalk from another speaker. State-of-the-art speech recognition 
systems perform poorly in such environments. We would like to know 
how much the additional visual lip-information can reduce the error of 
a purely acoustic system. 

We collected a database of six speakers spelling names or saying ran­
dom sequences of letters. Letters can be thought of as small words, 
which makes this task a connected word recognition problem. Each 
utterance was a sequence of 3-8 letter names. The spelling task is no­
toriously difficult, because the words (letter names) are very short and 
highly ambiguous. For example the letters "n" and "m" sound very sim­
ilar, especially in acoustically distorted signals. Visually they are more 
distinguishable (it is often the case that visual and acoustic ambigui­
ties are complementary, presumably because of evolutionary pressures 
on language). In contrast, "b" and "p" are visually similar but acous­
tically different (voiced plosive vs. unvoiced plosive). Recognition and 
segmentation (when does one letter end and another begin) have ad­
ditional difficulties in the presence of acoustical crosstalk from another 
speaker. Correlation with the visual image of one speaker's lips helps 
disambiguate the speakers. 

Our training set consists of 2955 connected letters (uttered by the six 
speakers). We used an additional cross-validation set of 364 letters to 
avoid overfitting. In this set of experiments the HMM emission prob­
abilities were estimated by a multi-Iayer-perceptron (MLP) [54]. The 
same MLP/HMM architecture has achieved state-of-the-art recognition 
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Task Acoustic AV Delta-AV relative 
err.red. 

clean 11.0 % 10.1 % 11.3 % 
20db SNR 33.5 % 28.9 % 26.0 % 22.4 % 
10db SNR 56.1 % 51.7 % 48.0 % 14.4 % 
15db SNR 67.3 % 51.7 % 46.0 % 31.6 % 
crosstalk 

Table 15.1 Results in word error (wrong words plus insertion and 
deletion errors caused by wrong segmentation) 

performance on standard acoustic databases like the ARPA resource 
management task. 

We have trained three different versions of the system: one based 
purely on acoustic signals using nine-dimensional RASTA-PLP features, 
and two that combine visual and acoustic features. The first bimodal 
system (AV) is based on the acoustic features and ten additional coordi­
nates obtained from the visual lip-feature space as described in section 
15.4. The second bimodal system (Delta-AV) uses the same features as 
the AV-system plus an additional ten visual "Delta-features" which es­
timate temporal differences in the visual features. The intuition behind 
these features is that the primary information in lip reading lies in the 
temporal change. 

"We generated several test sets covering the 346 letters: one set with 
clean speech, two with lOdb and 20db SNR additive noise (recorded 
inside a moving car), and one set with 15db SNR crosstalk from another 
speaker uttering letters as welL 

Table 15.1 summarizes our simulation results. For clean speech we 
did not observe a significant improvement in recognition performance. 
For noise-degraded speech the improvement was significant at the 0.05 
leveL This was also true of the crosstalk experiment which showed the 
largest improvement. 

15.4.4 Related Computer Lipreading Approaches 

One of the earliest successful attempts to improve speech recognition 
by combining acoustic recognition and lipreading was done by Peta­
jan in 1984 [249]. More recent experiments include [217, 335, 57, 328, 
138, 283, 230, 234, 208, 1, 175]. All approaches attempt to show that 
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computer lip reading is able to improve speech recognition, especially in 
noisy environments. The systems were applied to phoneme classification, 
isolated words, or to small continuous word recognition problems. Re­
ported recognition improvements are difficult to interpret and compare 
because they are highly dependent on the complexity of the selected task 
(speaker dependent/independent, vocabulary, phoneme/word/sentence 
recogntion), how advanced the underlying acoustic system is, and how 
simplified the visual task was made (e.g., use of reflective lipmarkers, 
special lipstick, or special lighting conditions). We believe that our sys­
tem based on learned manifold techniques and Hidden Markov Models 
is one of the most complete systems applied to a complex speech recog­
nition task to date but it is clear that many further improvements are 
possible. 

15.5 Constrained Interpolation of Lip Sequences 

So far we described how visual acoustic speech models can be used for 
recognition. In the next two sections we describe techniques that create 
new lip images which can be used for low-bandwidth video channels or 
facial animation applications. 

First, we describe how the constrained manifold representation is ap­
plied to nonlinear image interpolation. This has applications to our 
domain of visual acoustic speech recognition where the different modal­
ities are samples with different frequencies (30 images per second, 100 
acoustic features per second). Another potential application of "model 
based" interpolation are video phone and video conference tasks, where 
the image frequency is usually lower then 30 frames per second. 

Linear interpolated images are computed by traversing on a straight 
line between two key-feature vectors (images in our case). The inter­
polated image is the weighted average of two key images. Figure 15.6 
shows an example image which is the average of an open mouth and a 
closed mouth. The knowledge about the space of "legal" mouth shapes 
should constrain interpolated images to only lie in this space, similar to 
our tracking task. We like to traverse along the shortest curve that is 
embedded in the nonlinear manifold. We experimented with different 
techniques on how to traverse between two points on a nonlinear mani­
fold representation and achieved the best performance with a technique 
that we call "manifold snakes. 

The technique begins with the linearly interpolated points and itera­
tively moves the points toward the manifold. The Manifold-Snake is a 
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Fig. 15.6. Linear versus nonlinear interpolation. 

sequence of n points preferentially distributed along a smooth curve with 
equal distances between them. An energy function is defined on such 
sequences of points so that the energy minimum tries to satisfy these 
constraints (smoothness, equidistance, and nearness to the manifold): 

(15.2) 

E has value 0 if all Vi are evenly distributed on a straight line and 
also lie on the manifold. In general E can never be 0 if the manifold 
is nonlinear, but a minimum for E represents an optimizing solution. 
We begin with a straight line between the two input points and perform 
gradient descent in E to find this optimizing solution. 

Figure 15.7 shows a case of linear interpolated and nonlinear inter­
polated 45 x 72 pixel lip images using this algorithm. The images were 
recorded with a high-speed, 100 frames per second camerat. Because of 
the much higher dimensionality of the images, we projected the images 
into a lower dimensional linear subspace. Embedded in this subspace we 

t The images were recorded in the UCSD Perceptual Science Lab by Michael Cohen 
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15.7 45x72 images projected into a 16 dimensional subspace. Top row: 
linear interpolation. Bottom row: nonlinear "manifold-snake" interpolation. 

induced a nonlinear manifold using a training set of 2560 images. The 
linearly interpolated lip image shows upper and lower teeth, but with 
smaller contrast, because it is the average image of the open mouth and 
closed mouth. The nonlinearly interpolated lip images show only the 
upper teeth and the lips half way closed, which is closer to the real lip 
configuration. 

To learn the space of lip configurations in image space requires a 
relative large amount of example images. If we could code lip images 
using geometric features like we did for the tracking application, we could 
achieve a similar performance with less example shapes. Interpolating 
shapes is a "less nonlinear" task then interpolating graylevel images 
directly. 

This leads to a different interpolation technique that is based on es­
timating geometric control points and using them for image morphing. 
We describe in the next section a facial animation system that uses such 
an alternative image interpolating technique. 

15.6 Using Visual Acoustic Speech Models for Animation 

The inverse problem to visual acoustic speech recognition is the speech 
animation problem. Traditionally, such systems are based on muscu­
loskeletal models of the face that are driven by hand-coded dynamics 
[239]. Off the shelf text-to-speech systems produce phoneme categories 
that control the sequence of face model dynamics. Some systems are 
driven by input video data of tracked lips [292] or audio data [200] in­
stead of handcoded heuristics, and some systems output modified video 
data [205, 276] instead of rendered graphics images. 
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We describe a system VideoRewrite that uses visual acoustic stock 
footage to build a video model of the face, and uses that model to re­
purpose video sequences of talking people so they can say new words. In 
the current version of the system we assume that the new acoustic utter­
ance is given. The visual frames are generated such that they match the 
arbitrary new spoken sentence (visual dubbing). The system draws on 
the techniques that we introduced earlier for our visual-acoustic recog­
nition and interpolation tasks. VideoRewrite can be described as an 
appearance based animation technique that is an alternative to tradi­
tional 3D face model and hand-coded dynamical model based graphics 
techniques. 

15.6.1 Viseme Models 

Our new experiments are applied to news cast and movie scenes with 
unconstrained vocabulary. This requires a more general decomposition 
of our visual acoustic speech models. Ifwe wanted to recognize what has 
been said in the stock footage sequence, it would require modeling more 
than 60,000 words and we still would get a high error rate even with 
the best speech technology currently available. Instead to generate lip 
images synchronized to a new audio track we only need to model a small 
set of speech units that cover a basis set of lip movements. \Ve devel­
oped a decomposition of 9 viseme categories that group together visual 
similar phonemes. This categorization is a modification of a viseme set 
introduced by [204]. Figure 15.8 shows example frames for each of the 
nine categories. For example the voiced plosive Ibl and the unvoiced 
plosive Ipi and the lip position of Iml have a similar visual appearance 
and therefore are grouped together in one vise me category. 

Besides a different speech decomposition the new domain also puts 
different requirements on our visual acoustic feature representation and 
estimation. 

H:\IMs are generative models of speech. \Ve could generate likely 
trajectories through the state space and emission probability distribu­
tion and then backproject manifold coefficients to image space using 
techniques that we developed for the constrained image interpolation 
task. Unfortunately, the range of lip configurations covered by a sin­
gle HMM state is very large. This is alright for recognition but it is 
an obstacle for animation. In Ollr experiments it produced very blurry 
images (the average of many possible poses and appearances for one 
viseme). Besides the constrained subspace representation, we also store 
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A,AO,AW,AY B,P,M D,CH,JH,T,G,K,H,N 

E,EL,EY,EH F,V I,IY 

SH,S,Z DH,TH OW,OY,U,UW 

Fig. 15.8. Characteristic viseme example images. 

the explicit lip-space coefficients or complete input images with tracked 
geometric control points for each viseme model. Interpolating these im­
ages produces sharper images then picking random (but likely) points 
in the HMM emission probability distribution. Another advantage of 
the explicit storage of a set of images and their control points is that 
in animation mode we have a choice between different pose modes. We 
describe in detail such techniques in the next subsection. 15.9 
illustrates the modified datastructure for our new viseme models. In 
some cases we model control points at the inner and outer lip contours 
and in some cases we also model points at the chin and neck, because 
they need to be animated for visual speech as well. 

For acoustic features, we use the same front-end as in our earlier 
recognition experiments. The channel invariant coding of RASTA-PLP 
is useful because the stock footage and the new spoken utterance is most 
likely recorded using different microphone and room characteristics. 

To model coarticulation we also experimented with bi-viseme models. 
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Fig. 15.9. Data structure of the Viseme Model 

A bi-viseme is a pair of consecutive visemes. For example, saying a /ba/ 
or saying a /ma/ results in different /a/ lip positions. 

Figure 15.9 illustrates our new visual acoustic speech models. Like the 
earlier models it consists of three main parts: (i) a constrained space for 
the lip configurations used for tracking, (ii) class based acoustic features 
modeled by the emission probability distribution of the HMM states, (iii) 
class based visual features modeled as a set of explicit image coefficients 
and control points. 

15.6.2 Model Estimation 

The estimation of the model parameters is done using two speech databases. 
To build the constrained lip/face tracking space and the viseme class 
based example set we use a stock-footage sequence of the desired person 
that we would like to animate. To estimate the acoustical parameters we 
decided to use a much larger speaker independent database that contains 
phonetic labels (TIMIT). The reason why we use two different datasets 
for the different modalities is to compensate for two problems: (a) some 
of the stock-footage sequences are too small to have enough training 
data for robust recognition, (b) usually we only have full-sentence "close 
captions" for the stock footage available, but no detailed phonetic labels 
that are necessary to train our viseme models. 

The training of the constrained lip/face space using the stock-footage 
and the training of the acoustical parameters using the phonetic labeled 
TIMIT database is done using techniques described earlier. Based on 
the partially trained models we can estimate the viseme class-based ex­
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ample lip configurations. The sentence based close-caption of the stock­
footage is automatically transformed into a multiple pronunciation pho­
netic transcription using a pronunciation dictionary. The stock footage 
is decomposed into viseme sequences using the sound track and the 
trained acoustic HMMs in forced-viterbi mode. The lip and facial fea­
ture control points for each viseme image sequence are estimated using 
the trained lip/face space. 

15.6.3 Appearance Based Animation 

Now our visual acoustic speech model is ready for animation. It contains 
the trained acoustic features to transcribe the new input utterance, and 
a collection of example lip configurations for each viseme class to form 
an interpolated sequence of lip movements that fit the new audio track. 

For the background, we need to pick an image sequence out of the 
stock footage that has at least the same length as the new utterance. 
The "background" stock-footage sequence is processed with the same 
constrained lip/face tracking algorithm as the training stock-footage to 
estimate the locations where we would like to change the facial parts. 

We could just use a single background image that contains the rest 
of the non-moving facial parts, but we achieve a much more realistic 
video sequence if we retain the natural dynamics of the original scene. 
The sequences that we work with usually do not contain any drastic 
movements, but they never stay still. The head usually tilts to some 
extent and the eyes blink and produce various expressions. So far, we 
have made no attempt to synchronize these expressions to the new audio 
track. We replace just the lips or the lips, jaw, and neck to fit the new 
audio track. Potentially we could drive the other facial parts based on 
simple acoustic features. t 

While the HMM models transcibe the new audio track, they index a 
corresponding sequence of example lip configurations. In case a set of 
alternative lip-examples is available, we can choose among different lip 
sequences. In that case, the one that best fits the estimated background 
sequence is choosen, using a metric for pose similarity and dynamic 
programming. Once we have the sequence of key-frames, we need to 
interpolate missing frames dependent on the rate of speech. We integrate 
the new lips into the original background sequence using the tracked 
contours of lips, chin, and neck. We call this "stitching". Figure 15.10 

t 	For example the position of the eye-brows might change with pitch [237]. The 
system described in [84] models this finding. 
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shows the flow chart with example images. Figure 15.10(a) and (d) are 
two example key-frames. The images are spatially warped [25] in such a 
way that pixels along source contours are mapped to pixels along target 
contours. The two key frames have two different sets of source contours, 
but are mapped to the same set of target contours. To compute the 
target contour, we build the weighted average of the two key frame 
source contours and align the center and orientation of the upper lip 
contour with the original background lip contour. The lower lip contour 

and chin contour are rotated and shifted to the same extent, but not 
aligned to the contours of the background image. The neck contour is 
set equal to the background neck contour. Since the database includes 
the control-points the entire process is automatic. 

Figure 15.10(b) and (c) shows the warped versions of the two key 
frames. The warped images are cross-faded and multiplied with a soft 
spatial mask, Figure 15.10(e)), before they are integrated into the back­
ground image. 

A related technique based on optical flow measurements and image 
morphing was demonstrated for view interpolation of human faces by 
[28]. 

15.6.4 Experiments 

We applied VideoRewrite to stock-footage of a 30 minute sequence of 
CNN Headline News, and a short sequence of a Marilyn Monroe movie. 
In the case of the CNN Headline News we had enough data to build the 
Full Bi-Viseme Database. The Marilyn Monroe database consists of the 
nine example visemes plus silence, shown in Figure 15.8. We dubbed 
both examples to TIMIT utterances and sentences recorded in our lab. 
Figure 15.11 shows an example of the original Marilyn Monroe sequence 
and the dubbed sequence. As you can see in some cases a closed mouth 
shape has to be modified to an open shape and vice versa. The position 
of the chin and the resulting shadow on the neck changes as well, because 
we don't align these contours. Figure 15.12 shows an example sequence 
of the CNN newscast anchor woman where we only modified the lips. 
In some cases, the chin moves to the different direction than the lips, 
which produces unrealistic motion. 

The perceived realism of the animation is subjective. We believe it 
depends on the viewers lip-reading skills and the actor's/anchor's artic­
ulation skills. Highly trained lip-readers might have more objections to 
our dubbed video sequence than unexperienced viewers. Also Marilyn 
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Key-Frame Viseme Key-Frame Viseme 

(b) 
+ 

Fading Mask 

(e) 

~ 
Original "Background" New Image 

Fig. 15.10 Flow chart for morphing and stitching new lip images into the 
original movie sequence 

Monroe tends to "overlap" most of her original utterances with a "large 
smile". Thus the range of articulation in Marilyn's speaking is limited. 

Overall, we think the dubbed video sequences are more realistic than 
other animations produced by rendered 3D-models, text-to-speech sys­
tems, and hand coded articulators. An important feature of our system 
that increases the realism is the way we morph and blend the example 
database images into a background image sequence. Even if the rest 
of the face (eyes, eyebrows) moves in an uncorrelated way, the human 
observer usually gets the impression that such expressions fit the new 
utterance. So far we only modeled co-articulation with a very simple bi­
viseme set. We believe a better treatment of co-articulation [84] would 
add another degree of realism. 
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original sequence 

dubbed sequence 

original sequence 

dubbed sequence 

Fig. 15.11 Original and dubbed example images of the Marilyn Monroe scene 
using 10 visemes to model the lips, chin, and neck. The first sequence shows 
an open mouth being replaced with a closed-mouth, while the second sequence 
shows the opposite. 

15.7 The Next Step: Recognizing Body Gestures 

We described methods to represent and learn low-level feature con­
straints and temporal models offeature configurations. We applied these 
techniques to the domain of lip and facial features. The representations 
of geometric and appearances that we used are related to many other 
techniques applied to the same domain [301, 40, 341, 195]. Although 
faces and lips span a very complex set of configurations, the features 
generated lie on a relatively small constrained subspace. 

This is different in the domain of articulated objects like human bod­
ies or hands. Clothes generate a large range of appearance features 
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Original Sequence 

Dubbed Sequence 

Fig. 15.12 Original and dubbed example images of CNN Headline News using 
90 bi-visemes to model just the lips. 

due to difference in color and texture. The large numbers of degrees 
of freedom and self-occlusion produces a large range of geometric based 
features. We believe that manifold based representations and Hidden 
Markov Models can be applied to learn constraints, higher level repre­
sentations of articulated objects, like joint-angles, or body configurations 
over time. Lower level representations should be based on much weaker 
constraints, or more general properties. 

We describe extensions to our gesture recognition approach that em­
ploy such low-level probabilistic constraints to image sequences of ar­
ticulated gestures, and we outline how these new techniques can be 
incorporated into high-level manifold and HMM based representations. 

The human body can be approximated by an assembly of rigid seg­
ments that are linked together at joints. While performing an action or 
gesture most of the body segments move most of the time. This is a 
single strong cue. The image region corresponding to a body segment 
contains a single coherent motion field. Two segments can be disam­
biguated by detecting two different coherent motion areas in the image. 
Joints can be detected if the pose and motion fields of a segment pair 
comply with the constraints associating with a body joint. Over multi­
ple frames, characteristic sequences of jointed motion can be detected. 
For example, the process of walking consists of four connected body seg­
ments that traverse with three very characteristic periodic joint angle 
curves over time. 

We introduce two low-level "layers" that represent single coherent mo­
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Fig. 15.13 Motion Coherence Blobs: Given two consecutive images we are 
able to group pixel regions with coherent motion and spatial proximity using 
Expectation Maxinrimzation (EM) search. blob models that model the lower 
and uper arm segments. The 

tion blobs and jointed body segment pairs, and we describe how th(,Jle 
representations are integrated into higher-level kinematic manifolds and 
HMM based dynamical models in a probabilistic framework. The prob­
lem of constrained estimation of body segments and their actions is de­
scribed as a maximum a-posteriori estimation. The low-level hypothesis 
of coherent motion areas are the likelihood terms, and the higher-level 
kinematic and dynamical constaints are coded as priors. 

Motion Coherence Likelihoods: A collection of body segments are 
described with a multidimensional mixture of Gaussian Blobs. For each 
blob model, the means describe the center of mass in the image and its 
affine motion parameters. Part of the covariance describes the spatial 
distribution, and one variance describes the graylevel deviation of the 
motion prediction given the previous image frame. Without the spatial 
parameters, this approach is similar to layered motion estimation using 
EM search [161, 12]. 

Each pixel has a hidden random variable that assigns this pixel to one 
of the motion blob models or a background model. We initialize these 
models with optical flow clustering and then perform a few EM steps. 
Figure 15.13 shows some examples. 
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Fig. 15.14 One background model and four body segment hypotheses with 
joint constraints ranked with decreasing score values after two EM iterations. 
As you see the last 2 blob hypotheses have significant lower score that the first 
2 hypotheses, because no joint hypotheses with compatible motion could be 
computed. 

A similar representation based on Blob models for coherent color re­
gions is applied to the human body domain by [329}. 

Simple Kinematic Priors: To further constrain the blob estimation 
and to incorporate high-level domain knowledge, we introduce body joint 
hypotheses and score coefficients for body segments and joints. General 
constraints can be coded straightforwardly as quadratic log-prior terms 
that give high values to body joint hypotheses at locations that are 
"compatible" with body segment pose and motion. The score parameter 
for each segment or joint is proportional to the fit of these constraints. 
For a more detailed description of the constraints see [56}. Figure 15.14 
shows the top four ranked hypothesis of body segments and joints of an 
arm sequence. 
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Complex Kinematic Priors: A set of connected body segments with 
more than one joint, like a pair of legs, or the torso and arms complies to 
further constraints. Certain joint-angle configurations are not possible 
or occur less frequently than others. We can model and estimate such 
configuration scenarios with the manifold learning techniques described 
previously. A mixture of linear patches in the joint-angle space provides 
additional kinematic priors. Additional hidden random variables must 
be introduced to assign each of the body joint hypotheses to one of the 
linear patches. Another level of EM can be used for a feasible estimation 
process. 

Dynamical Priors: Constraints over multiple frames that are action 
specific can be modeled with Hidden Markov Models. As in the mani­
fold representation, additional hidden random variables assign each joint 
model to a Hidden Markov State. A bottom-up process estimates the 
expected value for this state, and then a top-down process uses priors 
from the Gaussian emission probability of the hidden states to further 
constrain the low-level estimation of body segment and joint models. 

Figure 15.15 shows a typical set of blob hypotheses. The top row 
shows the computed curve of rotation differences between two jointed 
body segments. Hidden Markov Models that are trained for typical 
angle curves detect primitive actions like arm swings. More extensive 
experiments using these high-level priors are currently in progress. 

15.8 Conclusion 

We have shown how constrained configuration subspaces and tempo­
ral models for configuration sequences can be estimated from example 
data and used for recognition and animation. We applied such mod­
els to the domain of visual acoustic speech recognition and synthesis. 
We also outlined what additional low level feature constraints and mid­
level articulated constraints are needed to estimate representations of 
articulated objects. 

We believe that probabilistic modelling and learning such models from 
data is a crucial feature in our systems. Especially in the more complex 
domain of articulated human actions, we believe that bottom-up and 
top-down information flow, using iterative techniques like multiple EM 
optimizations, is another useful technique that shows how low and high­
level models can interact and used to recognize non-trivial gestures. 
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Fig. 15.15 The bottom row shows two motion blob models found for the left 
arm of the person. The middle-row shows the posteriori probabilities that a 
pixel belongs to either the upper arm blob or the lower arm blob. The top 
row shows a history of rotation angles. Each angle is the difference between 
the rotation of the upper and lower arm blob. 
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Foreword: Out of Sight, Out of Mind 
N. Negroponte 

Face it. Butlers cannot be blind. Secretaries cannot be deaf. But 
somehow we take it for granted that computers can be both. 

Human-computer interface dogma was first dominated by direct ma­
nipulatiou and then delegation. The tacit assumption of both stylt!s of 
int,('metioll has been that the human will be explicit, unambiguous and 
fully atteutive. Equivocation, contradiction and preoccupation are un­
thinkable even though they are very human behaviors. Not allowed. \Ve 
are expected t,o be dL'iciplined, fully focused, single minded and 'there' 
with every at.teuding muscle in our body. \Vorsc, we accept it. 

TillIes will change. Cipolla, Pentland et al, fly in the face (pun in­
tended) of traditional human-computer interfacc res<~arch. The ques­
tiolls they pose and auswers they provide have the common thread of 
concuw.:mcy. Namely, by combining modes of communication, the re­
sulting ridmetis of expression is not ollly far greater than the sum of 
the parts, bllt allOWH for one channel to disambiguate the other. Look. 
There's all example right t,hcre. Where? Well, you can't see it, be­
calise YOIl Gallnot see mc, where I am looking, what'H around me. So the 
example is left to your imagination. 

That':.; fine ill literature and for well codified tasks. Works for making 
ws('rvatioml, buying a.nd Helling stocks and, think of it, almost cv­

l'l'ythill!!; WI' do wit.h computers t.oday. But this kiBd of categorical COlll ­

plltiu!!; is (TlIlllllly for design, debate and deliberation. It is really 1U-;e!CSH 

Whell tlr(' purposc of cOlllUlIlnication is to coiled our own thoughts. U11­

del' sneh {'ollditiollH what you say i8 often far less important than how 
yon say it. Gest.ure and facial expression are signal, not noise as some 
might itaV(' them, a.nd sometimes so powerflll that words are incidental. 

YOill' fnee is your display. This display is wired so tightly to what you 
say. it is almoHt. impm;::;ible to turn it off. \-Vateh somebody talking on 
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