
THE INFLUENCE OF PITCH AND NOISE ON THE
DISCRIMINABILITY OF FILTERBANK FEATURES

Malcolm Slaney, Michael L. Seltzer

Microsoft Research, 1065 La Avenida, Mountain View, CA 94043
malcolm@ieee.org, mseltzer@microsoft.com

ABSTRACT

Most features used for speech recognition are derived from the out-
put of a filterbank inspired by the auditory system. The two most
commonly used filter shapes are the triangular filters used in MFCC
(mel-frequency cepstral coefficients) and the gammatone filters that
model psychoacoustic critical bands. However, for both of these fil-
terbanks there are free parameters that must be chosen by the system
designer. In this paper, we explore the effect that different parameter
settings have on the discriminability of speech sound classes. Specif-
ically, we focus our attention on two primary parameters: the filter
shape (triangular or gammatone) and the filter bandwidth. We use
variations in the noise level and the pitch to explore the behavior of
different filterbanks. We use the Fisher linear discriminant to give us
insight about why some filterbanks perform better than others. We
observe three things: 1) there are significant differences even among
different implementations of the same filterbank, 2) wider filters help
remove the non-informative pitch information, and 3) the Fisher cri-
teria helps us understand why. We validate the Fisher measure with
speech recognition experiments on the Aurora-4 speech corpus.

Index Terms— Speech Recognition, MFCC, pitch, DNN, deep
neural network, mel-frequency cepstral coefficients, Aurora-4

1. OVERVIEW

We started this project to better understand why a slight modifica-
tion to the ubiquitous MFCC (mel-frequency cepstral coefficients)
representation provided a significant improvement over the study’s
baseline. Instead we found wide variations in the details of MFCC
implementations that dramatically affect speech recognition perfor-
mance. This paper is a cautionary tale, along with a description of a
tool to understand the reasons for the performance.

Our initial experiments with PNCC, a new representation based
on perception [4], were encouraging and confirmed the paper’s con-
clusions. Yet we were surprised to discover that the PNCC rep-
resentation did not do better, in a large-scale experiment using a
voice-search corpus, than our baseline system. Closer study led us
to the observation that the HTK implementation of MFCC used as
our baseline was different than the Auditory Toolbox implementa-
tion used as a baseline in the PNCC study.

MFCC filterbanks are still important to automatic speech recog-
nition (ASR). State of the art recognizers use deep neural networks
(DNNs) and these networks perform best when using a smoothed
spectrum as input [9]. Ideally a DNN should give good results with
any representation of the input signal, but in practice DNNs have
worked best when the input representation if something akin to the
MFCC filterbank. Thus we show results of speech-recognition ex-
periments with a DNN-based acoustic model to verify the real-world
performance.

There is much interest in designing new features for ASR that
better characterize the important phonetic information, and remove
the uninformative. One such approach is scattering theory, where a
representation is designed to be sensitive to important distinctions,
and insenstive to noise [5]. Our investigations into the effect of pitch
on recognition accuracy is an experimental step in this direction.

Pitch and speech recognition have a mixed history. The conven-
tional wisdom is that MFCC is a good representation because the
cepstral processing, in a process reminiscent of homomorphic fil-
tering, removes the pitch fluctuations in the power spectrum. But
recent work has shown that adding pitch information to a recognizer
improves performance [7], perhaps because formant positions are
modified to fit the pitch harmonics [10]1. Yet other work shows that
estimating the tone in a Chinese utterance can be done without mea-
suring the pitch [8]. Thus the influence of pitch and speech recogni-
tion is not as clear as we might like. Still pitch is used in this study
as a source of variability in the recognition task.

2. TOOLS

In this section we describe the MFCC representation, and a modifi-
cation using gammatone filters instead of the normal triangle filters.
We also describe our diagnostic procedure, which consists of syn-
thetic vowels, and the Fisher linear discriminant.

2.1. MFCC

There are two popular implementations of the MFCC representation.
They are the ones found in the Hidden Markov Toolkit (HTK) [13]
and the Auditory Toolbox [12]. Both implement the triangular fil-
ters that are the hallmark of the MFCC representation, but there are
many small differences. The basic processing for MFCC process-
ing consists of several steps: spectral analysis, forming critical-band
filters to approximate the perceptual system, a loudness transforma-
tion, and then a discrete cosine transform (DCT) to reduce the di-
mensionality of the signal. Unfortunately this rather loose descrip-
tion allows a number of variations.

Our analysis is based on the summary code produced by Dan
Ellis [3]. His code implements many popular variations of MFCC
and characterizes their differences with algorithmic parameters. The
HTK and Auditory Toolbox implementations of MFCC differ in 8
different dimensions! Table 1 shows these differences.

The PNCC system recommends a number of changes to MFCC
and suggested significantly better results due to these modifications

1Simpson notes that female speakers often have an expanded vocal space,
as measured by formant frequencies. This can be interpreted to suggest that
speakers with higher pitch enhance the speech they produce to make the for-
mants easier to distinguish, even in the face of wide harmonic spacing.
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Label AT Value HTK Value
Liftering exponent 0 -22
DCT Type 2 3
Number of bands 40 24
Max Freq 6855 Nyquist
Filterbank Scale mel HTK mel
Filter domain Magnitude Power
Min Freq 133.33 0
Window Length 16ms 25ms

Table 1. Differences between Auditory Toolbox (AT) and HTK im-
plementations of MFCC (as implemented by Ellis [3])

[4]. We believe the two primary contributions in Kim’s paper are the
shape of the filters, and how the power is normalized. This paper
only addresses the filter-shape issue.

Note, we only work with the filterbank representation in this
paper. For an MFCC representation, one reduces the dimensionality
of the data using a discrete cosine (DCT) transform, but the effect of
this step is orthogonal to the issues described here.

2.2. Gammatone Filters

We want to better understand the effect of bandwidth on perfor-
mance. The bandwidth of MFCC triangular filters is determined by
the spacing of the channels, since MFCC triangle i starts at the cen-
ter frequency of triangle i− 1, peaks at CF i, and falls to zero at the
center frequency of channel i+ 1.

PNCC changes the shape of the basic filter from triangular to a
gammatone filter. The gammatone filter is a popular model of how
auditory “channels” behave in the human auditory system. The fil-
ter widths are normally measured with critical band experiments,
based on simple masking experiments, and then fit to the gamma-
tone model.

The gammatone function is defined by this time-domain expres-
sion

h(t) =

{
ctn−1exp(−2πbt)cos(2πf0t), t >= 0
0, t < 0,

(1)

where b determines bandwidth of the filter and f0 is the center fre-
quency. Using Glasberg and Moore’s parameters [11] the bandwidth
of a filter is a non-linear function of the center frequency (CF ),
b = 1.09((CF/9.26449 + 24.7). We converted this to a frequency-
domain weight using Darling’s derivation [1].

These filters are often implemented as frequency-domain filters.
It is important to note whether filters are characterized by their re-
sponse in the magnitude domain, as is often done, or in the power
domain (as can be done by HTK.) This distinction is important, for
the purposes of this paper, because squaring a gammatone filter so
it can be applied in the power domain makes it look more triangu-
lar. Or perhaps in a way that is more germane to this discussion, a
triangle in the power domain (ala HTK) looks like a gammatone in
the magnitude domain (ala the Auditory Toolbox). This is shown in
Figure 1.

2.3. Synthetic Vowels

To more easily test the ideas in this paper, we synthesized three static
vowels /a/, /i/, and /u/ using the standard formant frequencies in the
Auditory Toolbox [12]. To make the task more meaningful we varied
the pitch of the vowels over a wide range (100–250 Hz) and added

Fig. 1. Three types of filters used in auditory filterbanks. The right-
most filter is the magnitude response for a triangular filter (left) im-
plemented in the power domain and is a better approximation of a
gammatone filter (middle).

noise at varying levels. We then converted these audio waveforms
into different versions of the MFCC representation and judged their
suitability for recognition. This was done by using a measure of
discriminability (see Section 2.4 below). A representation is better
if there is better discriminability between the acoustic classes. In
Section 3.4 we verify these ideas using a full recognition experiment.

2.4. Fisher Linear Discriminant Criteria

We use the criterion from the Fisher linear discriminant to charac-
terize the performance of different representations. While in the end
all that matters is speech-recognition performance, we would like
to have a better understanding of why different representations per-
form as they do. Thus, we use discriminability as a ruler. Clouds of
data that are further apart are more discriminable. Classes with more
noise, and thus larger clouds, are more confusable.

Consider a set of data x that contains data belonging to two or
more classes x ∈ Xi. The Fisher linear discriminant finds a rotation
w of the data to maximize the following two-class criterion function
[2]

J(w) =
|m̃1 − m̃2|2

s̃21 + s̃22
, (2)

where m̃i is the mean of the ni rotated data pointswxi and 1/nis̃
2
i is

the corresponding variance. The Fisher criteria maximizes the ratio
of two quantities: the inter-class and intra-class spreads. We base the
intra-class spread, which will become the denominator so we hope it
is small, on the spread of each data cluster.

Sw =
∑
i

s̃2i . (3)

The inter-class spread, which is larger for better discriminability, is
equal to

SB =
∑
i

ni(m̃i − m̃)(m̃i − m̃)t. (4)

The discrimination criteria becomes

J(w) =
wtSbw

wtSww
. (5)

We optimize this criteria, a generalized eigenvalue problem, with
respect to w by finding the roots of the characteristic polynomial

|SB − λiSw| = 0 (6)



and then solving for the first eigenvector w1 using

(SBλiSW )wi = 0. (7)

The optimum value ofw allows us to calculate the optimum discrim-
inability. The maxium of this critera (2) is a good tool for explaining
why one representation is better than another.

The Fisher criteria has a geometric explanation. The inter-class
distance is divided by the average spread (intra-class) of the data,
giving a dimensionless measure that is scaled by the data’s spread.
Thus a Fisher measure of 2 means that the data’s centroids are twice
the spread of the data, so the data clouds, as measured by their stan-
dard deviation, are just touching.

3. RESULTS

To better understand the role of the filterbank representation on ASR
performance, we tested many variations of MFCC. We compared
the two standard representations in Section 3.1. Sections 3.2 and 3.3
describe the effect of filter bandwidth and pitch on discriminability.
Finally, in Section 3.4 we close the loop with full recognition exper-
iments using MFCC filterbanks, DNNs, and the Aurora-4 corpus.

3.1. Effect of MFCC Parameters

As described above, the HTK implementation of MFCC and that
found in the Auditory Toolbox differ along 8 dimensions. Figure 2
shows a summary of these differences, with the aim of understand-
ing which dimensions matter for speech recognition. Each panel
shows the discriminability of the three vowels as a function of sig-
nal to noise ratio. Evidently, the only two dimensions that make a
difference are the (temporal) window length and number of filters
(channels). Changing these two parameters causes the HTK rep-
resentation to match the discriminability of the Auditory Toolbox
representations, as shown in the lower-right panel of Figure 2.

3.2. Effect of Filter Bandwidth on Discrimination

Figure 3 shows the discriminability of the MFCC representations
from the HTK and Auditory Toolbox using triangle and gammatone
filters. As described in the original PNCC paper, the switch to gam-
matone filters gives a significant difference in discriminability over
the original Auditory Toolbox filters. But this switch is not enough
to exceed the performance of the HTK filters, using either gamma-
tone or triangle filters. Perhaps there is something else that matters
more than the filter shape

The curves of Figure 3 are a summary of the discriminability
over the range of SNRs shown in Figure 2. To reduce the complexity
of the graph we plot the average difference between the measured
discriminability and the response for the standard HTK filter with
a bandwidth multiplier of 1. Thus the standard HTK filter has a
relative discriminability of 1 and is shown with an X on the plot.

3.3. Effect of Pitch on Discriminability

We started our work with a hypothesis that filter shape had an effect
on the representation of a harmonic (voiced) speech signal. A repre-
sentation with sharp filters, like that of a triangle, might be more sen-
sitive to pitch because the exact location of the peak might or might
not line up exactly with a harmonic. Small changes in the pitch
would move a harmonic through the triangles peak, giving relatively
large changes in the filterbank representation. Next we concentrate

Fig. 2. The performance of 8 different variations of MFCC parame-
ters, as measured by the Fisher discrimination critera. The upper line
indicates the performance of the HTK MFCC, and the lower line is
for the Auditory Toolbox performance. The line marked with an
“x” are the result of changing the HTK parameters in one (or two)
dimensions at a time, in order to match the Auditory Toolbox pa-
rameters. The first 8 plots show the disciminability by changing one
parameter at a time. The last plot shows the effect of changing the
only two parameters that matter.

on the relative filter bandwidth, since the default bandwidth of the
triangle (CF-CF) and gammatone (critical band) filters are different.

To explore the connection between the sensitivity of the rep-
resentations to pitch, we synthesized vowels with a range of low
(100–158Hz) and high (158–250Hz) pitches. We also varied the fil-
ter bandwidth by linearly scaling the filter width with a filter band-
width multiplier. A multiplier of 1 means that the triangle filters ex-
tend from CF to CF, as originally specified, while gammatone filters
have a nominal width of one critical band.

Figure 4 shows the effect of a filter bandwidth multiplier on dis-
criminability. In general the discriminability of the low-pitch vowels
is better than the high-pitch vowels (especially for high-bandwidth
multipliers). This is (probably) because the high-pitch sounds have
more intra-class variability. On the left with narrow filters, the gam-
matone filters are broader so the discriminability of the gammatone
filters is better than the mel filters.

3.4. ASR on Aurora-4

To connect this analysis to speech recognition performance, we
performed a series of experiments using the Aurora-4 corpus [9].
Aurora-4 is a medium vocabulary task based on the Wall Street
Journal (WSJ0) corpus. We performed the experiments with the
16 kHz multi-condition training set consisting of 7137 utterances
from 83 speakers. One half of the utterances were recorded by the
primary Sennheiser microphone and the other half were recorded
using one of a number of different secondary microphones. Both



Fig. 3. Overall performance (averaged over all SNRs for HTK and
Auditory toolbox implementations of MFCC, with triangular and
gammatone filter shapes. This graph is a function of an extra band-
width multiplication factor, over and above the normal bandwidth:
CF i−1 to CF i+1 for the triangles, and critical bands for the gamma-
tone. The bandwidth multiplier ranges from 0.2 to 5.

halves include a combination of clean speech and speech corrupted
by one of six different noises (street traffic, train station, car, babble,
restaurant, airport) at 10–20 dB SNR. The evaluation set is derived
from the WSJ0 5K-word closed-vocabulary test set which consists
of 330 utterances from 8 speakers. This test set was recorded by the
primary microphone and a secondary microphone. These two sets
are then each corrupted by the same six noises used in the training
set at 5–15 dB SNR, creating a total of 14 test sets. These 14 test
sets can then be grouped into 4 subsets: clean, noisy, clean with
channel distortion, noisy with channel distortion.

We performed speech recognition using a hybrid DNN-HMM
acoustic model. We trained the DNN using a cross-entropy objective
function with labels generated by a forced alignment of the training
data to the 3202 senones of a conventional GMM–HMM recognizer.
We decoded the speech with the task-standard WSJ0 bigram lan-
guage model.

In the experiments performed, we used different variations of
HTK filterbank features as input to the DNN. In all cases, we nor-
malized the utterance-level means and used first- and second-order
derivative features. We formed the input layer from a context win-
dow of 11 frames. The DNNs had 7 hidden layers with 2048 hidden
units in each layer and the final soft-max output layer had 3202 units,
corresponding to the senones of the HMM system. We initialized
the networks using layer-by-layer generative pre-training and then
discriminatively trained using twenty-five iterations of back propa-
gation. We used a learning rate of 0.16 for the first 15 epochs and
0.004 for the remaining 10 epochs, with a momentum of 0.9. Seltzer
et al. published more details of the training procedure [9].

We experimented with 6 different filterbanks. In all the cases,
the we applied the filterbank’s magnitude response to the power
spectrum of the input signal and then applied a natural logarithm.
We experimented with both the mel-frequency triangular filters and
the gammatone filter responses and in each case, evaluated filters
with the standard bandwidth, half the bandwidth, and twice the band-
width. Figure 5 shows the results. The normal triangle filterbank has
its best performance at the default width, while shrinking the band-
width provides better results for the gammatone filterbank.

Fig. 4. Filterbank performance as a function of extra bandwidth, for
low and high pitch speech sounds. The bandwidth multiplier ranges
from 0.2 to 5.

Fig. 5. ASR performance on the Aurora-4 corpus with HTK MFCC
using triangular and gammatone filters, as a function of extra band-
width (a multiplicative factor).

4. CONCLUSIONS

This paper describes the effect of bandwidth and filter shape on mod-
ern ASR systems. This topic is important because MFCC filterbanks
are often used as a baseline for ASR experiments, and there are sig-
nificant differences in performance with seemingly small changes
in implementation. We investigated these differences by looking
at the system’s response to noise and pitch variations. We used a
ruler based on the Fisher linear discriminant criteria to measure how
different filterbank parameters affect recognition performance, and
then validated our hypothesis using the Aurora-4 corpus. While both
bandwidth and filter shapes represent linear rotations of the original
spectral slice, and DNNs should be immune to such changes, they
do have a significant impact on system performance. The discrim-
inability experiments suggest that wider bandwidths are best in the
face of pitch variations, but this must be tempered with narrow fil-
ters that can represent many different phonetic classes, as found in
the Aurora-4 corpus. These countervailing factors give the minimum
error shown in Figure 5.
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