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ABSTRACT
When humans converse with each other, they naturally amal-
gamate information from multiple modalities (i.e., speech,
gestures, speech prosody, facial expressions, and eye gaze).
This paper focuses on eye gaze and its combination with
speech. We develop a model that resolves references to vi-
sual (screen) elements in a conversational web browsing sys-
tem. The system detects eye gaze, recognizes speech, and
then interprets the user’s browsing intent (e.g., click on a
specific element) through a combination of spoken language
understanding and eye gaze tracking. We experiment with
multi-turn interactions collected in a wizard-of-Oz scenario
where users are asked to perform several web-browsing tasks.
We compare several gaze features and evaluate their effec-
tiveness when combined with speech-based lexical features.
The resulting multi-modal system not only increases user in-
tent (turn) accuracy by 17%, but also resolves the referring
expression ambiguity commonly observed in dialog systems
with a 10% increase in F-measure.

Categories and Subject Descriptors
I.2.7 [Natural Language Processing]: Language Parsing
and Understanding—speech and gaze understanding
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1. INTRODUCTION
Humans naturally use information from multiple modali-

ties when interacting with each other, motivating the inte-
gration of these signals when interpreting user requests to a
conversational-interaction system. In this work, we focus on
the use of two modalities for spoken language understand-
ing: voice and eye gaze. Users see information on a display
and use their voice to control a conversational interaction,
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such as finding information about a topic or performing a
transaction.

In such systems, there are two types of conversational
turns: generic and referential. A referential turn refers to
an item on display, while a generic turn does not. First we
must detect that the user has a generic request, independent
of the display contents. For example, the first turn of an in-
teraction (such as a user asking show me movies nearby) is
usually not referring to an item on display. In the second
type of user turn the user’s utterance refer to an item on
display—understanding involves resolution of that item. In
this paper, we focus on this second step. We wish to identify
an item to which the user is referring in a spoken utterance,
using the location of their eye gaze on a display.

In our previous work on using multi-modal information for
spoken-language understanding, we integrated hand-pointing
gestures with spoken utterances for click intent detection [7].
Furthermore, in simulated experiments, we analyzed the ac-
curacy of click intent detection with respect to the distance
between the targeted item and the pointing position. We
also performed a detailed analysis of lexical features for this
task for a variety of display designs, interaction domains and
user devices [2]. Other related studies include work by Misu
et al. [9], who proposed an in-car spoken dialog system that
integrates multi-modal inputs of speech, geo-location, gaze
(as estimated from face direction) and dialog history to an-
swer drivers’ queries about their surroundings. Due to the
in-car nature of the dialog application, what the user sees
changes over time. Cooke et al. [3] also investigated inte-
gration of eye gaze with spoken utterances, with a focus on
dynamic model-based adaptation methods for noise-robust
automatic speech recognition (ASR). For evaluation, they
use a dataset recorded for a ‘put that there’ task [1], where
the user tells a receiver to position a colored shape on a dis-
played map. Along similar lines to our work, Prasov and
Chai [10] studied contribution of eye gaze for reference res-
olution. Their work targets situated understanding, where
users refer to objects in context, and eye gaze compensates
for the lack of domain modeling. Similarly, Kennington et
al. [8] looked into interpolation of lexical, eye gaze and point-
ing models for this task, where the semantic space is pre-
defined as the set of puzzle-pieces. A special feature of their
modeling framework is incremental understanding, allowing
for understanding of user’s input incrementally during each
user turn.



Figure 1: Setting for gaze supported interactions
with a conversational system.

Symbol Desctiption

t turn id

s(t) sentence at turn t

lk(t) candidate link k at turn t

L(t) set of links at turn t

d[·] distance between two points on the display

Pstart(t) fixation point at the beginning of the utterance

Pend(t) fixation point at the end of the utterance

md[·] closest fixation point during the utterance

f(t) features extracted at turn t

l̂(t) predicted link at turn t

Table 1: The notation used in the paper.

In this work, to simulate various forms of visual displays
and conversational interaction tasks, we chose a conversa-
tional search and browse task that allows users to navigate
web pages that include various forms of hyperlinks, buttons,
text boxes, etc. Figures 1 and 2 show the system setting,
user utterances and system actions in a sample interaction.
In such a conversational system, users may explicitly refer
to items on web pages (i.e., user utterance includes the full
or partial text of a link) or make implicit referrals (i.e., se-
lect or use position of items on the page, select the top one).
Lexical features that measure the textual similarity between
user utterances and displayed items are expected to be use-
ful for resolving explicit referrals, but are not satisfactory
for the implicit referrals. Gaze features help resolve both
cases, especially with erroneous ASR, where user utterances
are not always correctly recognized.

In the following sections, we first describe our approach
for modeling the resolution of referring expressions using
spoken utterances and user’s eye gaze. Then, in Section 3,
we describe the experimental setup and the data collection.
In the experiments section, we first analyze the collected
data in terms of different types of referrals. We then present
experiments where we analyze the contribution of lexical
and eye gaze features. Results from the experiments where
we use both types of features show that both modalities
are useful for resolution of referring expressions, and their
contribution is complementary.

2. MODELING FOR RESOLUTION OF RE-
FERRING EXPRESSIONS

We frame the resolution of referring expressions as a bi-
nary classification problem, where all links on the page dis-
played to the user lk(t) ∈ L(t) (k = 1, ..., |L(t)|), paired with
user’s utterance s(t) at turn t, and their eye gaze fixation
points form the examples to be classified. We consider ex-

User: I wanna shop for women’s shoes at <website>.com
System: [opens up <website>.com, women’s shoes page]
User: Go to heels
System: [follows “heels” link]
User: Add these shoes to my cart

Figure 2: An example multi-modal conversational
interaction, with a transcription of user utterances,
system actions and display contents.

amples that include the link targeted by the user as positive
examples, and all the rest of the candidates are negative
examples.

We then extract a set of features that compute lexical
similarity between the text associated with each candidate
link, lk(t), and the user utterance, s(t) (referred to as lexical
features). These features include:

• cosine similarity between term vectors of lk(t) and s(t),

• number of characters in the longest common subse-
quence of lk(t) and s(t), and
• a binary feature that indicates if the link text was in-

cluded in user’s utterance or not, and if so, the length
of the link text.

To provide robustness to possible errors in tokenization and
ASR, we compute similarity features both at the word and
character levels.

To capture the information from user’s eye gaze, we first
compute fixation points where a user’s eye gaze lands, and
the start and end time of that fixation. Our eyes process
information during short fixation times when the eye is not
moving. The eyes reorient during quick ballistic movements
known as saccades, but we are not processing information
during these times. We need to identify the fixation points
to know what has been read. We use an algorithm by
Salvucci [4] to identify each fixation point from our eye-gaze
data. For each recorded eye-gaze location, we look for a set
of points extending over at least 100ms that are clustered
together. A cluster is defined by a Manhattan distance of
less than 40 pixels. Thus with an average sampling rate of
30Hz, we need at least three points in close proximity to de-
termine that there is a fixation point. In this work, we use
the centroid of this cluster as the fixation point, and we sug-
gest that the subject is referring to items in close proximity
to this point.

We then extract eye gaze features that represent distance
d[·] from the surrounding box of candidate link, lk(t), to:

• the fixation point at the beginning of the utterance
start(t), Pstart(t): d[Pstart(t), lk(t)]
• the fixation point at the end of the utterance end(t),

Pend(t): d[Pend(t), lk(t)]
• closest eye gaze fixation point during the utterance,

md[start(t), end(t)]:
md[start(t), end(t)] = minx∈(start(t),end(t))d[Px, lk(t)]

• closest eye gaze fixation point during the 2 second win-
dow before the start of the user’s utterance,

md[start(t)− 2, start(t)]

Figure 3 depicts the computation of the distance. Note that,
during the saccades, the distance to any candidate link is set
to a large number.



Figure 3: Computation of distance between hyper-
links displayed at turn t and eye gaze fixation points.

During runtime, at each turn t, we parse the displayed
pages for the set of candidate links L(t) and select the can-
didate lk(t) that has the highest probability of being the
positive class example given the user’s utterance and the
associated set of features f(t):

l̂(t) = argmaxlk(t)∈L(t)P (positive|lk(t), f(t))

In experiments, we compare the contribution of each type
of feature, as well as their combination. Furthermore, to see
the effect of the quality of speech transcription, we exper-
iment with clean (i.e. manual) and noisy (i.e., automatic)
speech transcription conditions.

3. DATA COLLECTION AND EXPERIMENT
SET UP

We collected real-time eye-gaze data using a Tobii REX.
Users were seated at slightly more than arm’s distance from
a 24-inch display. We used the standard Tobii calibration
process. This system provides eye-gaze information at ap-
proximately 30 Hz.

Before each session, subjects were presented a task de-
scription and asked to perform the task naturally, using
multiple modalities. The tasks included browsing for infor-
mation, such as finding a nearby restaurant, as well as trans-
actions, such as buying flight tickets. The wizard heard the
spoken utterances of the subjects and was shown the same
display contents as the subject. However, on wizard’s dis-
play, the area where the user’s eye gaze was pointing to (as
captured by Tobii) was shaded with a circle. The wizard
took actions to satisfy the user’s request, such as clicking on
a link, or filling in web forms.

At each turn, we recorded the user’s spoken utterances,
the list of candidate links on display as well as the complete
contents of the web page. We also recorded each wizard
action, time synchronized with the user’s actions.

4. EXPERIMENTS

4.1 Data Sets
In our experiments we collected data from 27 speakers,

each performing 9 tasks. User turns included requests to fol-
low links on display, system commands such as scroll down,
utterances possibly not addressed to the machine (such as,
’oh’, ’no’), and form filling requests. The tasks result in
an average of 12.2 user turns. The data set includes 2,965
turns, 581 of which aim to follow a link on the screen. There
are in total 175,113 candidate links on the web pages visited
by the users (an average of 301.4 per each click turn).

We use a state-of-the-art large vocabulary ASR system
in our experiments [5]. The acoustic models incorporate
the latest advances in context-dependent deep neural net-
works (DNN) for estimating senone likelihoods. The lan-

guage model (LM) is a general-purpose backoff 4-gram model
with a vocabulary of about 400K words. This generic LM
(GLM) was trained on a wide variety of sources ranging from
transcribed speech from deployed ASR applications, such as
voice search, to text from a diverse set of web resources. The
GLM was not tailored or adapted to the tasks of our study.

As described earlier, users can refer to items on display in
several different ways. Table 2 shows the types of utterances
observed in our data set and their relative frequencies.

4.2 Results
We performed 27-fold classification experiments, where we

take out the data set of one user at each fold, to use it
as the test set, and use all the remaining examples as the
training set. We use icsiboost [6] for classification. Table 3
shows the turn accuracy and F-measure results from these
experiments. Turn accuracy refers to the percentage of turns
where only a single link was returned by the classifier and
that was the link targeted by the user. For many examples,
two or more links were assigned the same probability by the
classifier, but only one was the one targeted by the user.
These cases are considered as system errors for turn accu-
racy. However, reducing the set of candidates from many
examples to a few, where the system can ask a clarification
question to the user (instead of asking the user to repeat
the request) may result in a better conversational interac-
tion experience. Hence, we also report F-measure results,
macro-averaged over turns in this table.

As seen in Table 3, lexical features result in higher turn ac-
curacy and F-measure than gaze features alone. This could
be explained by the fact that majority of utterances in our
data set include exact match or explicit referrals, which can
easily be resolved, especially since usually (but not always)
there is a single link with the matching text. Also, many
pages are densely populated with links, and many links are
in close proximity to user’s eye-gaze fixations. Hence, while
the set of candidates may be reduced by gaze features, it
may be difficult to identify the correct one. However, the
gaze features are also useful, and the combination of the two
types of features results in the best performance in terms
of both measures. The turn accuracy (and F-measure) of
42.7% (55.6%) with just lexical features improves to 59.7%
(65.6%) when we include gaze features in the experiments.

When erroneous ASR transcriptions are used instead of
the clean/manual transcriptions, as will be the case with a
real application, the performance with lexical features de-
grades significantly: turn accuracy drops from 42.7% to
32.9%, while performance with gaze features stays the same.
The ASR word error rate on this data set is 44.8%. The per-
formance numbers with the combined set of features is again
better than the performance with individual set of features.

4.3 Discussions and Future Work
Our study shows significant connections between gaze fea-

tures and the variables characterizing the lexical overlap
with the targeted link. It is interesting to observe that the
target focused gaze indicates the presence of the targeted
link nearby. Nevertheless, we observed data and framework
related issues that may have interfered with the model’s ac-
curacy and that we should investigate more as a follow-up
study. These can be summarized as:

• Text normalization issues: We observe such issues
when the text normalization becomes complex, for in-



Referral Type Example User Utterance Example Text Associated Relative
with Link/Image/Button Frequency

Exact Match how to register a vessel how to register a vessel 35.3%
Explicit go to sneakers and athletic shoes sneakers and athletic shoes 34.1%
Explicit Partial that to my cart add to cart 9.6%
Implicit, Position select the second one yumeya sushi 3.9%
Implicit select this how to register a vessel 8.6%
Multiple click on yumeya that’s number two yumeya sushi 1.0%
Other find vendors search or no text associated with link 7.5%

Table 2: Examples from conversational interactions.

Experiment MANUAL ASR
TA F TA F

Only Lexical Features 42.7% 55.6% 32.9% 43.2%
Only Gaze Features 18.6% 25.6% 18.6% 25.6%
All Features 59.7% 65.6% 51.8% 56.3%

Table 3: Turn accuracy (TA) and F-measure with
manual and ASR transcriptions.

stance, the link text shows ‘7:00 pm’, but the user
speaks ‘seven o’clock ’. In the future, we plan to use
better text normalization as a preprocessing step to
interpret the relation between the utterance and link
text.

• Display related issues: The display screen in our
framework is a typical web page, which may introduce
additional ambiguities to our model. Specifically, when
users refer to an item on a web page they would think
that the item is a clickable object, when it is actually
not.

The main conclusion we glean from our experiments is
that we observe the best performance when we include both
types of features. We think that it would be beneficial had
we integrated the features from the two modalities, such as,
adding a linking binary feature to indicate the closest link
candidate with matching text. In a follow-up study, we plan
to investigate such features.

Other avenues that we can investigate include:

• joint modeling of automatic detection of referrals to
displayed items and resolution of referring expressions.

• improving ASR by using displayed page contents [7]
and eye-gaze focused language models [11],

• extending the set of lexical features by using extended
set of ASR hypotheses (such as, n-best lists and word
lattices) and matching between phone sequences.

5. CONCLUSIONS
We presented a framework that exploits gaze features for

spoken language understanding in human-machine dialog
systems. Our model interprets the user’s intent in a con-
versational browsing scenario (e.g., clicking on a link) using
a combination of gaze and voice. We introduced several new
gaze features and evaluated their efficiency together with the
lexical features. The features were extracted from the user’s
eye-gaze pattern, spoken utterances, and the text displayed
on the screen. The resulting multi-modal system not only
increases user intent (turn) accuracy by 17%, but also re-
solves referring expression ambiguity commonly observed in
dialog systems with a 10% increase in F-measure.
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