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used in systems that permit noninvasive imaging of tissue

characteristics which are not identifiable by other tech-

niques. The system design has gray level resolution of 256

levels and spatial resolution of 5 X 5 mm. Both of these

resolutions are sufficient to provide necessary information

for indicating the potential of microwave-induced thermo-

plastic imaging as a useful method for imaging biological

tissues. The hybrid parallel/serial design yields good pic-

ture quality of reasonable cost, provided the object is

quasi-stationary.
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Limitations of Imaging with First-Order
Diffraction Tomography
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Abstract —In this paper, the resnlts of computer simulations used to
determine the domains of applicability of the first-order Born and Rytov

approximations in tilffraction tomography for cross-sectiosmt (or three-di-
mensiormf) imaging of biosystems are shown, These computer simulations
were conducted on single cylinders, since in this case analytical expressions
are available for the exact scattered fields. The simnfations establish the
first-order Born approximation to be valid for objects where the product of

the relative refractive index and the diameter of the cylinder is less than

0.35X. ‘flte first-order Ryto~ approximation is vafid. with essentially no
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constraint on the size of the cylinde~ however, the relative refractive index
must be less than a few percent.

We have also reviewed the msnmptions made in the first-order Born and
Rytov approximations for diffraction tomography. Frrrther, we have re-
viewed the derivation of the Fourier Diffraction projection Theorem, which
forms the basis of the first-order reconstruction algorithms. We then show
how this derivation points to new FFT-based implementations for the
higher order diffraction tomography algorithms that are currently being

developed.

I. INTRODUCTION

D URING THE past ten years, the medical community

has increasingly called on X-Ray computerized

tomography (CT) to help make its diagnostic images. With
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this increased interest has also come an awareness of the

dangers of using ionizing radiation, and this, for example,

has made X-Ray CT unsuitable for use in mass screening

of the female breast. As a result, in recent years, much

attention has been given to imaging with alternative forms

of energy, such as low-level microwaves, ultrasound, and

MR (magnetic-resonance). Ultrasonic B-scan imaging has

rdready found widespread clinical applications; however, it

lacks the quantitative aspects of ultrasonic computed

tomography, which, in turn, can only be applied to soft

tissue structures such as the female breast.

A necessary attribute of any form of radiation used for

biological imaging is that it be possible to differentiate

between different tissues on the basis of propagation

parameters. It has already been demonstrated by Larsen

and Jacobi [15] that this condition is satisfied by micro-

wave radiation with the relative dielectric constant and the

electric loss factor in the 1–10-GHz range. When used for

tomography, a distinct feature of microwaves is that they

allow one to reconstruct cross-sectional images of the

molecular properties of the object. The dielectric properties

of the water molecule dominate the interaction of micro-

waves and biological systems [13], [14], and thus by inter-

rogating the object with microwaves it is possible to image,

for example, the state of hydration of an object.

The past interest in microwave imagery has focused

primarily on either the holographic, or the pulse-echo

modes. In the holographic mode, most attention has focused

on conducting targets in air, although there are exceptions

as represented by the work of Yue ei al. [27] wherein

low-dielectric-constant slabs embedded in earth were

imaged. The approach of Yue et al. is not applicable to the

cross-sectional imaging of complicated three-dimensional

objects, because of the underlying assumptions made re-

garding the availability of a priori information about the

‘propagators’ in a volume cell of the object. Another

example of microwave imaging with holography is the

work of Gregoris and Iizuka [6], wherein conductors and

planar dielectric voids were holographically imaged inside

flat dielectric layers. A reflection from the air-dielectric

interface provided the reference beam. Again, this work is

not particularly relevant for microwave imaging of biosys-

tems since many important biological constituents are di-

electrics dominated by water. When used in the pulse-echo

mode, microwaves again possess limited usefulness due to

the requirement that the object be in the far field of the

transmit/receive aperture.

Tomography represents an attractive alternative to both

holography and pulse-echo for cross-sectional (or three-

dimensional) reconstruction of geometrically complicated

biosystems, but there is a fundamental difference between

tomographic imaging with X-rays and microwaves. X-rays,

being nondiffracting, travel in straight lines, and therefore,

the transmissiorl data measures the line integral of some

object parameter along straight lines. This makes it possi-

ble to apply the Fourier-slice theorem [22], which says that

the Fourier transform of a projection is equal to a slice of

the two-dimensional Fourier transform of the object.

On the other hand, when microwaves are used for tonm-

graphic imaging, the energy often does not propagate along

straight lines. When the object inhomogeneities are large

compared to a wavelength, energy propagation is char-

acterized by refraction and multipath effects. Moderate

amounts of ray bending induced by refraction can be taken

into account by combining algebraic reconstruction algo-

rithms [2] with digital ray tracing and ray linking algo-

rithms [1].

When the object inhomogeneities become comparable in

size to a wavelength, it is not appropriate to talk about

propagation along lines or rays, and energy transmission

must be discussed in terms of wavefronts and fields

scattered by the imhomogeneities. In spite of these difficul-

ties, it has been shown [5], [10], [18], [26] that with certain

approximations a Fourier-slice-like theorem can be for-

mulated. In [21], this theorem was called the Fourier Diff-

raction Projection Theorem. It may simply be stated as

follows:

When an object is illuminated with a plane wave as shown
in Fig. 1, the Fourier transform of the forward scattered fields
measured on a line perpendicular to the direction of propaga-
tion of the wave (line TT in Fig. 1) gives the values of the
two-dimensional Fourier transform of the object along a cir-
cular arc as shown in the figure.

In Section III, we will review the proof of this theorem.

In our review, we will show how the derivation of the

theorem points to an FFT-based implementation of higher

order Born and Rytov algorithms, which are currently

under development by us and other researchers. The Fou-

rier Diffraction Projection Theorem is valid only when the

inhomogeneities in the object are weakly scattering.

According to the Fourier Diffraction Projection Theo-

rem, by illuminating an object from many different direc-

tions and measuring the diffracted data, one can, in princi-

ple, fill up the Fourier space with the samples of tlhe
Fourier transform of the object over an ensemble of cir-

cular arcs and then reconstruct the object by Fourier

inversion.

The above theorem ~forms the basis of the first-order

diffraction tomography. The work of Mueller et al. [18]

was initially responsible for focusing the attention of many

researchers on this approach to cross-sectional and three-

dimensional imaging, although from a purely scientific

standpoint the technique owes its origins to the now-classic

paper by Wolf [26], and a subsequent article by Iwata and

Nagata [9].

As shown in the review in Section II, the algorithms for

diffraction tomography are derived from the classical wave

equation. The wave equation is a nonlinear differential

equation that relates an object to the surrounding fields.
To estimate a cross-sectional image of an object, it is

necessary to find a linear solution to the wave equation

and then to invert, this relation between the object and the

scattered field. The necessary approximations for this pur-

pose limit the range of objects that can be successfully

imaged to those that do not severely change the incident
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field or have a small refractive index gradient compared to

the surrounding media. In Section II, we will first review

the two most common approximations used, the first-order

Born and Rytov; and then in Section IV, we will show tlhe
effects of these approximations on computer-simulated re-

constructions made from exact data.

These simulations will establish the first-order Born ap-

proximation to be valid for objects where the product of

the change in refractive index and the diameter is less than

0.35 A, and the first-order Rytov approximation for changes

in the refractive index of less than a few percent, with

essentially no constraint on the object size.

II. ASSUMPTIONS UNDERLYING FIRST-ORDER

DIFFRACTION TOMOGRAPHY

Diffraction tomography is based on a linear solution to

the wave equation. The wave equation relates an object
and the scattered field, and by linearizing it we can find art

estimate of a cross section of the object based on the

scattered field. The approximations used in the lineariza-

tion process are crucial to the success of diffraction tomogr-

aphy, and we will be careful to highlight the assumptions.

In a homogeneous medium, electromagnetic waves satisfy

a homogeneous wave equation of the form

(V’2+k&)4(?)=0 (:1)

where the wavenumber k. represents the spatial frequency

of the plane wave and is a function of the wavelength A, or

k. = 27r/X. It is easy to verify that a solution to (1) is given

by a plane wave

*(7) = eJZ’”7 (2)

where ~0 is the wave vector of the wave and satisfies the

relation l~o I = k.. For imaging, the interest is in an inho-

mogeneous medium, so the more general form of the wave

equation is written as

(V2+k(7)2)~(?)=0. (3)

For electromagnetic fields, if the effects of polarization are

ignored, k(?) can be considered to be a scalar function

representing the refractive index of the medium. We then

write

k(?) =kon(?) =ko[l+n~(?)] (4)

where k. now represents the average wavenumber of the
media, and n(?) is the refractive index as given by

‘(’)=i’TT (5)

The parameter na(?) represents the deviation from the

average of the refractive index. In general, it will be

assumed that the object of interest has finite support, so

n ~( 7) is zero outside the object. Here, we have used ~ and

c to represent the magnetic permeability and dielectric

constant and the subscript zero to indicate their average

values.
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If the second-order terms in nd (i.e., no<< 1) are ignored point inhomogeneity, the Green’s function can be consid-

we find ered to represent the field resulting from a single point

(V2+k~)t(?)= -2k~n8(7)+(?)= -~(7)0(7) (6)

where 0(7) = 2k~n ~(?) is usually called the object func-

tion.

Note that (6) is a scalar wave propagation equation. Its

use implies that there is no depolarization as the electro-

magnetic wave propagates through the medium. It is known

[8] that the depolarization effects can be ignored only if the

wavelength is much smaller than the correlation size of the

inhomogeneities in the object. If this condition is not

satisfied, then, strictly speaking, the following vector wave

propagation equation must be used:

scatterer.

Since (11) represents the radiation from a two-dimen-

sional impulse source, the total radiation from all sources

on the right-hand side of (11) must be given by the

following superposition:

+~(7)=/G(H’) 0(7’) +(7)d7’. (15)

In general, it is impossible to solve (15) for the scattered

field, so approximations must be made. Two types of

approximations will be considered: the Born and the Rytov.

A. The Born Approximation

v2~(r)+k~n2~(?)–2v
[1
:.i =0 (7)

The Born approximation is the simpler of the two ap-

proaches. Consider the total field +(?) expressedas the. ... .

where ~ is the electric-field vector. A vector theory for
sum of the incident field $.(7), and a small perturbation

diffraction tomography based on this equation has yet to
+3(?) as in (9). The integral of ‘(15) is now written as

be developed.

In addition, *0(7), the incident field, is also defined as
~,(?) =~G(7-7’)O(?’)~ O(?’)dr’

(v2+k;)~O(7) =0. (8)
J

+ G(?–?’)0(7’)+~( ?’)dr’. (16)

Thus, tjO(7) represents the source field or the field present

without any object inhomogeneities. The total field may be If the scattered field ~$(?) is small compared to ~O(?), the

expressed as the sum of the incident field and the scattered effects of the second integral can be ignored to arrive at the

field approximation

+(?)=+.(?)++.(7) (9) ~,(7) =/G(7–?’)0(7’)~ 0(7’) dr’, (17)

with ~, satisfying the wave equation

(v’+k;)id~)=-+(~)o(~) (lo)

which is obtained by substituting (8) and (9) in (6). This

form of the wave equation will be used in the work to

follow.

The scalar Helmholtz equation (10) cannot be solved for

~,(?) directly, but a solution can be written in terms of a

Green’s function [16]. The Green’s function, which is a

solution of the differential equation

This constitutes the first-order Born approximation. For a

moment, let’s denote the scattered fields obtained in tlhis
manner by @\l)(?). If one wished to compute $:’)(?), which

represents the second-order approximation to the scattered

fields, that could be accomplished by substituting *O i- ~i~)

for $0 in the right-hand side of (17), yielding

J~j2J(7) = G(7- 7’)0(7’)[1#0(7’)+ ~jl)(?’)] dr’. (18)

In general, we may write

(v2+k~)G(?l?’) =-?l(7-7’) (11)
~~+’)(7) =~G(?-P)O(7’)[~0 (7’)+ ~~)(7)]dr’

is written in 3-space as

(1,9)#oR
G(?l?’)=m

’12) for the higher (i+ l)th approximation to the scattered

with fields in terms of the ith solution, Since the science of

R= I?–?’l.
reconstructing objects with higher order approximations is

(13) not fully developed, this particular point will not be pursued

In two dimensions, the solution of (11) is written in terms any further, and the first-order scattered fields will be

of a zero-order Hankel function of the first kind, and can represented by ~, (i.e., without the superscript).

be expressed as Note again that the first-order Born approximation is

valid only when the magnitude of the scattered field
G(717’) = {Hjl)(kOR). (14)

+,(7)=+(7)-$.(7) (20)

In both cases, the Green’s function G(?l?’) is only a is smaller than that of the incident field tjO. If the object is

function of the difference 7 – ?’, so the argument of a cylinder of constant refractive index, it is possible to

the Green’s function will often be represented as simply express this condition as a function of the size of the object

G(? – ?’). Because the object function in (11) represents a (radius= a) and the refractive index. Let the incident wave
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$.(?) ~e a plane wave propagating in the direction of the
vector kO. For a large object, the field inside the object will

not be given by

~ (7)= 4’0~JeC,(7) + Ae~Z0”7 (21)

but instead will be a function of the change in refractive

index n ~. Along a ray through the center of the cylinder

and parallel to the direction of propagation of the incident

plane wave, the field inside the object becomes a slow (or

fast) version of the incident wave or

~object(~) = A.W+”8)ZOF (22)

Since the wave is propagating through the object, the

phase difference between the incident field and the field

inside the object is approximately equal to the integral of

the change in refractive index through the object. There-

fore, for a cylinder, the total phase shift through the object

is approximately

Phase Change = 47rn6 ~ (23)

where A is the wavelength of the incident wave. For the

first-order Born approximation to be valid, a necessary

condition is that the change in phase between the incident

field and the wave propagating through the object be less

than T. This condition can be expressed mathematically as

A
naa <—.

4
(24)

B. The Rytov Approximation

The Rytov approximation is valid under slightly less

severe restrictions. It is derived by considering the total

field to be represented as [8]

~(?) = e$(~ (25)

and rewriting the wave equation (1) as

(V@)2+V2@ +k~=-2k~n8. (26)

Expressing the total phase @ as the sum of the incident

phase function $0 and the scattered complex phase ~, or

@(7) =@o(7)+ $.(?) (27)

where

*O(?) = e%(o (28)

we find that

( vqJ2+2vl#oT43 + ( V41J2+ V’+.

+V2@, +k:(l+2n8) =0. (29)

As in the Born approximation, it is possible to set the zero

perturbation equation equal to zero to find

2V~0.V+, + V2@~ = –(V@, )2–2k~n8. (30)

This equation is inhomogeneous and nonlinear, but can

be linearized by considering the following relation

V’($oo$) = v’+~”o$ +2V*O”V+S + +Ov’+,. (31)

Recalling that

+0= ~eJL?F (32)

we find

2+OV+0. V$. + +OV 20, = V’($O@, )+ k;toq$. (33)

This result can be substituted into (30) to find

(V2+k~)4@,= - 40[(V@,)2+2k&a]. (34)

As before, the solution to this differential equation can

again be expressed as an integral equation. This becomes

V@, = ~v,G(~– 0tO[(V%)2+2k;n~] dr’ (35)

where the Green’s function is given by (14).

Under the Rytov approximation, it is assumed that the

term in brackets in the above equation can be approxi-

mated by

(v’@, )2+2k~na = 2k&t8. (36)

When this is done, the first-order Rytov approximation to

the scattered phase O, becomes

Substituting the expression for ~, given in (17) yields

(38)

It is important to note that, in spite of the similarity of

the Born (17) and the Rytov (37) solutions, the approxima-

tions are quite different. As will be seen later, the Born

approximation produces a better estimate of the scattered

amplitude for large deviations in the refractive index for

objects small in size. On the other hand, the Rytov ap-

proximation gives a more accurate estimate of the scattered

phase for large-sized objects with small deviations in re-

fractive index.

When the object is small and the refractive index de-

viates only slightly from the surrounding media, it k possi-

ble to show that the Born and the Rytov approximations

produce the same results. Consider our definition of the

scattered phase in (25) and (27). Expanding the scattered

phase in the exponential with the Rytov solution to the

scattered field, it is seen

+(~) = e+o(i)+%(n = +o(~)eexp(-~zo ‘Jf’,(~. (39)

For very small ~,(?), the first exponential can be written

in terms of the power series expansion to find

t(7) =+o(~)[l +exp(–.jZ0.7) 4,(7) ]=+o(7)+ *f(7).

(40)

Thus, when the magnitude of the scattered field is very

small, the Rytov approximation simplifies to the Born

approximation.

The Rytov approximation is valid under a less restrictive

set of conditions than the Born approximation [4], [11]. In
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deriving the Rytov approximation, the assumption was

made that

(V@,) 2+2k~n8 = 2k~na. (41)

Clearly this is true only when

n,>> (wd2
k; “

(42)

This can be justified by observing that, to a first approxi-

mation, the scattered phase ~, is linearly dependent on n ~

[4]. If no is small, then

(Vq5S)2~n; (43)

will be even smaller, and, therefore, the first term in (41)

above can be safely ignored. Unlike the Born approxima-

tion, the size of the object is not a factor in the Rytov

approximation. The term VOJ is the change in the complex

scattered phase per unit distance, and by substituting k. =

27r/A, we find a necessary condition for the validity of the

Rytov approximation is

[1V4.A 2
n8 >> —

2T “
(44)

Therefore, in the Rytov approximation, it is the change in

scattered phase +, over one wavelength that is important

and not the total phase. Thus, because of the v operator,

the Rytov approximation is valid when the phase change

over a single wavelength is small.

III. INVERSION OF THE SCATTERED FIELDS

The Fourier Diffraction Theorem relates the Fourier

transform of the scattered field, the diffracted projection,

to the Fourier transform of the object along a circular arc.

While a number of researchers have derived this theory

[18], [5], [21], [12], we would like to propose a system

theoretic analysis of this result which is fundamental to

first-order diffraction tomography. This approach is super-

ior not only because it allows the scattering process,to be

visualized in the Fourier domain, but also because it points

to efficient FFT-based computer implementations of higher

order Born and Rytov algorithms currently under develop-

ment. Since it appears that the higher order algorithms will

be more computationally intensive, any savings in the

computing effort involved is potentially important.

Consider the effect of a single plane wave incident on an

object. The forward scattered field will be measured at a

receiver line as shown in Fig. 2. We will find an expression

for the field scattered by the object 0(?) by analyzing (17)

in the Fourier domain. We will use the plots of Fig. 3 to
illustrate the transformations that take place.

The first-order Born equation for the scattered field (17)

can be considered as a convolution of the Green’s function

G(7) and the product of the object function 0(7) and the

incident field $.(?). First, we will define the following

865

Y

Measured field t

I

*

Incident plane wave

Fig. 2. A typical diffraction tomography experiment.

Fourier transform pairs:

where we have used the relationships

(46)

~ = (a, ~) and (a, /?) being the spatial frequencies along

the x and y directions, respectively.

The integral solution to the wave equation (17) can now

be written in terms of these Fourier transforms

J,(ii)= G(x){ b(A)*&(I)} (47)

where we have used ‘ *‘ to represent convolution. When

the illumination field ~0 consists of a single plane wave

with ~0 = ( kX, kY ) satisfying the following relationship

k;=k~+k; (49)’

its Fourier transform is given by

JO(I)=2778(X- ZI)). (50)

The delta function causes the ,convolution of (47) to be-

come a shift in the frequency domain as given by

o(x) *Jo(I) =2r6(i–&). (51)
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(a)

Y

k

(b)

(c)

(d)

A
ky

k

(e)

Fig. 3. Fourier spectrum representation of diffraction tomography ex-
periment. (a) The object function, (b) the incident field, (c) the scatter-
ing potential, (d) the Green’s function, and (e) the scattered field.

This convolution is illustrated in Fig. 3(a~–(c) for a plane

wave propagating with direction vector kO = (O, kO). Fig.

3(a) shows the Fourier transform of a single cylinder of

radius L!, and Fig. 3(b) is the Fourier transform of the

incident field. The resulting convolution in the frequency

domain (or multiplication in the space domain) is shown in

Fig. 3(c).

To find the Fourier transform of the Green’s function,

the Fourier transform of (11) is taken to find

(- A2+k:)~(~lF’)=- e-~l”r (52)

where A2 = a2 +/32. Rearranging terms, we see that

–“x.?’
G(A17’)= :2’k3 (53)

has a singularity for all ~ such that

A2=a2+~2=k;. (54)

In the space domain, the two-dimensional Green’s func-

tion, (14), has a singularity at the origin so it is necessary to

approximate the function by using a two-dimensional aver-

age of the values near the singularity. An approximation to

G(A) is shown in Fig. 3(d).

The Fourier transform representation is misleading be-

cause it represents a point scatterer as both a sink and a

source of waves. A single plane wave propagating from left

to right can be considered in two different ways depending

on the point-of-view. From the left side of the scatterer, the

point scatterer represents a sink to the wave, while to the

right of the scatterer the wave is spreading from a source

point. Clearly, it is not possible for a scatterer to be both a

point source and sink and later, when the expression for

the scattered field is inverted, it will become necessary to

choose a solution that leads to outgoing waves only.

The effect of the convolution shown in (17) is a multipli-

cation in the frequency domain of the shifted object func-

tion, (51), and the Green’s function, (53), evaluated at
7’= O. The scattered field is written as

(55)

This result is shown in Fig. 3(e) for a plane wave propagat-

ing along the y axis. Since the largest frequency domain

components of the Green’s function satisfy (l), the Fourier

transform of the scattered field is dominated by a shifted

and sampled version of the object’s Fourier transform.

We will now derive an expression for the field at the

receiver line. For simplicity, it will be assumed that the

incident field is propagating along the positive y axis or

k. = (O, ko). The scattered field along the receiver line

(x, y =1) is simply the inverse Fourier transform of the

field in (55). This is written as

which, using (55), can be expressed as

(57)

We will carry out the integration with respect to ~. For a

given a, the integral has a singularity at

&2= ~{k; - a2 . (58)

Using contour integration, we can close the integration

path at infinity and evaluate the integral with respect to/3
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Fig. 4. Path of integration to calculate two-dimensionafscatteredfields.

along the path shown in Fig. 4 to find

IObject’s
ky

I Object’s

k.

*$(x,y=/) =Jrl(a; l)eJ”’da+Jr2(~;l)eJ”’d~
I

Fig. 5. The transmitted and reflected fields provide information about
two different arcsin the object’sFourier domain.

(59)

where receiver line at y = 1 greater than the object. This can be

o(a,~~– ‘0) ~jp/
considered transmission tomography. Conversely, the

rl = (60) dashed line indicates the locus of solutions for y= 1 less

j2{~ than the object or the reflection tomography case.

Straight-ray (i.e., X-ray) tomography is based on the

Fourier Slice Theorem [10], [22]and

O(rx, -/k;-a* – ‘0)e-j-lr2 = (61)
– j2{~

Examining the above pair of equations, it is seen that 1’1

represents the solution in terms of plane waves traveling

along the positive y axis while 172represents plane waves

traveling in the – y direction. In both cases, as a ranges

from – /c. to ko, r represents the Fourier transform of the

object along a semi-circular arc.

Since we are interested in the forward traveling waves,

only the plane waves represented by the rl solution are

valid, and thus the scattered field beeomes

+.(x, y= 1) =Jrl(a; i)ejaxda, 1> object (62)

where we have chosen the value of the square root to lead

only to outgoing waves.

Taking the Fourier transform of both sides of (62), we

find that

J(+, x,y=l)e-’axdx =f’(a,l). (63)

But since r(x, 1) is equal to a phase-shifted version of the

object function, the Fourier transform of the scattered field

along the line y = 1 is related to the Fourier transform of

the object along a circular arc, The use of the contour

integration is further justified by noting that only those

waves that satisfy the relationship

a2+~2=k; (64)

will be propagated, and thus it is safe to ignore all waves

not on the ko-circle.

This result is diagramed in Fig, 5. The circular arc

represents the locus of all points (a, /3) such that /3=

+ f=. The solid line shows the outgoing waves for a

The Fourier transform of a parallel projection of an image
f(x, y) taken at an angle O gives a slice of the two-dimen-
sional transform, F( w], W2) subtending an angle O with the
riq axis.

This is diagramed in Fig. 6.

Equation (63) leads us to a similar result for diffraction

tomography. Recall that a and /3 in (63) are related by

/! I=/p. (65)

Thus, f’(a), the Fourier transform of the received field, is

proportional to O(a, P – ko), the Fourier transform of the
object along a circular arc. This result has been called the

Fourier Diffraction Projection Theorem [21] and is dia-

gramed in Fig. 1,

We have derived an expression, (63), that relates the

scattering distribution of an objeet to the field received at a

line. Within the diffraction limit, it is possible to invert this

relation to estimate the object scattering distribution based

on the received field.

A number of experimental procedures have been pro-

posed to collect the data required to reconstruct the com-

plete object. A single incident plane wave generates infor-

mation along an arc in the object’s Fourier domain, and by

rotating the object [18], varying the frequency of the il-

luminating field [12], or by synthesizing an aperture [19], it

is possible to fill up the Fourier space.

In addition, there are two types of algorithms that can

be used to estimate the object. As proposed by Soumekh

et al. [23], they can be described as interpolation in either

the frequency or space domain. A comparison of these two

methods has been published in [21].

The Fourier Diffraction Projection Theorem establishes

a connection between the diffracted projections and an

estimate of the object’s Fourier transform along circular
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Fig. 6. The Fourier slicetheorem.

arcs. The fact that the frequency domain samples are

available over circular arcs, whereas, for fast Fourier inver-

sion, it is desired to have samples over a rectangular lattice,

is a source of computational difficulty with a direct Fourier

inversion technique. Mueller et al. [17] have shown that by

using nearest neighbor interpolation, it is possible to ade-

quately map the data onto a rectangular grid and then use

an FFT algorithm to invert the data. More sophisticated

approaches are discussed in [21].

An interpolation procedure in the space domain was first

proposed by A. J. Devaney [5]. This approach is similar to

the backprojection algorithm [10] that made X-ray tomog-

raphy successful, but since a propagation filter is applied

to the projection data as it is smeared over the image plane,

it has been called filtered-backpropagation. Since the prop-

agation filter is depth-dependent, this approach is com-

putationally more expensive than the frequency domain

interpolation approach, It has been shown [21] that recon-

structed images with bilinear interpolation are comparable

in quality to those produced by filtered-backpropagation.

IV. DISTORTIONS INTRODUCED BY

FIRST-ORDER ALGORITHMS

Several hundred computer simulations were performed

to study the fundamental limitations of first-order diffrac-

tion tomography. In diffraction tomography, there are

different approximations involved in the forward and in-

verse directions. In the forward process, it is necessary to

assume that the object is weakly scattering so that either

the Born or the Rytov approximations can be used. Once

we arrive at an expression for the scattered field, it is

necessary to not only measure the scattered fields but then

numerically implement the inversion process.

The mathematical and experimental efiects limit the

reconstruction in different ways. The most severe mathe-

matical limitations are imposed by the Born and the Rytov

approximations. These approximations are fundamental to

the reconstruction process and limit the range of objects

that can be examined. On the other hand, the experimental

limitations are caused because it is only possible to collect

a finite amount of data. Up to the limit in resolution

caused by evanescent waves, it is possible to improve a

reconstruction by collecting more data.

By carefully setting up the simulations, it is possible to

separate the effects of these errors. To study the effects of

the Born and the Rytov approximations, it is necessary to

calculate (or even measure) the exact fields and then make

use of the best possible (most exact) reconstruction for-

mulas available. The difference between the reconstruction

and the actual object can then be used as a measure of the

quality of the approximations.

These simulations are similar to a study performed by

Azimi and Kak. In [3], the effects of multiple scattering on

first-order diffraction tomography algorithms were dis-

cussed for objects consisting of multiple cylinders, It was

concluded that even when object inhomogeneities are as

small as 5 percent of the background, multiple scattering

can introduce severe distortions in first-order reconstruc-

tions.

A. Qualitative Analysis

The exact field for the scattered field from a cylinder as

shown by Weeks [25] was calculated for cylinders of vari-

ous sizes and refractive index. In the simulations that
follow, a single plane wave was incident on the cylinder,

and the scattered field was calculated along a line at a

distance of 100 wavelengths from the origin.

At the receiver line, the received wave was measured at

512 points spaced at 1/2 wavelength intervals. In all cases,

the rotational symmetry of a single cylinder at the origin

was used to reduce the computation time of the simula-

tions.

The simulations were performed for refractive indices

that ranged from O.1-percent change (refractive index of

1.001) to a 20-percent change (refractive index of 1.2), For

each refractive index, cylinders of size 1, 2, 4, and 10
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1.001 1.01 1.,10 1.20

1A

21

4X.

1OA

Fig. 7. Reconstructionsusing the Born approximation for cylinders of
radius 1, 2, 4, and 10A, aud refractive indices of 1.001,1.01, 1.10, and
1.20.

wavelengths were reconstructed. This gave a range of phase

changes across the cylinder (see (23) above) from 0.0047r to

87r. The resulting reconstructions using the Born approxi-

mation are shown in Fig. 7,

Clearly, all the cylinders of refractive index 1.001 in Fig.

7 were perfectly reconstructed. As (24) predicts, the results

get worse as the product of refractive index and radius gets

larger. The largest refractive index that was successfully

reconstructed was for the cylinder in Fig. 7 of radius 1

wavelength and a refractive index that differed by 20

percent from the surrounding medium.

While it is hard to evaluate the two-dimensional recon-

structions, it is certainly reasonable to conclude that only

cylinders where the phase change across the object was less

than or equal to 0.877 were adequately reconstructed. In

general, the reconstruction for each cylinder where the
phase change across the cylinder was greater than n shows

severe artifacts near the center. This limitation in the phase

change across the cylinder is consistent with the condition

expressed in (24) above.

A similar set of simulations was also done for the Rytov

approximation, and is shown in Fig. 8. In this case, the

reconstructions were performed for cylinders of radius 1, 2,

40, and 100 A, and refractive indices of 1.001, 1,01, 1.05,

and 1.10. Because of the large variation in cylinder sizes,

al reconstructions were performed so that the estimated

object filled half of the reconstruction matrix. While the

error in the reconstructions does increase for larger cylin-

ders and higher refractive indices, it is possible to success-

fully reconstruct larger objects with the Rytov approxima-

tion.

B. Qualitative Comparison of the Born and

Rytov Approximation

Reconstructions using exact scattered data show the

similarity of the Born and Rytov approximations for. small

objects with small changes in the refractive index. For. a

cylinder of radius 1 wavelength and a refractive index that

differs by 1 percent from the surrounding medium, the

resulting reconstructions are shown in Fig. 9. In both cases,

869

I.cml 1.01 I .06 1.10

Ii

2!.

40i

Iooh

Fig. 8. Reconstructionsusing the Rytov approximation for cylinders of
radius 1,2,40, and 100A, and refractive indicesof 1.001,1.01,1.05, anc~
1.10.

A Rytov

Fig. 9. Born and Rytov reconstructionsof a 1 cylinder of 1A radius and
1.01refractive index.

the reconstructions are clean and the magnitude of the

reconstructed change in refractive index is close, to the

simulated object.

On the other hand, the reconstructions of objects that

are large or have a refractive index that differ by a large

factor from one illustrate the differences between the Born

and the Rytov approximations. Fig. 10 shows a simulated

reconstruction for an object of radius 1 and refractive

index of 1.20. In this region, the Born approximation i;s

superior to the Rytov.

According to Chemov [4] and Keller [11], the Rytov

approximation should be much superior to the Born for

objects much larger than a wavelength, Reconstructions
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I’!lBorn

Fig. 10. Reconstructions of a radius 1A cylinder and refractive index
1.20showingthe advantageof the Born over the Rytov.

Fig. 11. Reconstructions of a radius 40A cylinder and refractive index
1.01showing the advantageof Rytov over the Born.

were done based on the exact scattered wave from a

cylinder of radius 40 wavelengths and a refractive index

that differed by 1 percent from the surrounding medium.

The reconstructed refractive index is shown in Fig. 11.

While the Born approximation has provided a good esti-

mate of the size of the object, the reconstruction near the

center is clearly not accurate.

The results in Figs. 10 and 11 are consistent with the

regions of validity of the Born and Rytov approximations.

The Born approximation is sensitive to the total phase shift

in the object. Thus, in the reconstruction of Fig. 10, the

Born approximation has done a good job of representing

the step change in refractive index, but as the incident field

undergoes a phase shift through the object, the reconstruc-

tion becomes poor. On the other hand, the Rytov ap-

proximation is sensitive to the change in refractive index.

Thus, the Rytov reconstruction is accurate near the center

of the object but provides a very poor reconstruction near

the boundary of the object.

C. Quantitative Studies

In addition to the qualitative studies, a quantitative

study of the error in the Born and Rytov reconstructions

was also performed. As a measure of error, we used the

relative mean squared error in the reconstruction of the

object function integrated over the entire plane. If the

actual object function is 0(7) and the reconstructed object

function is 0’(7), then the relative Mean Squared Error

(MSE) is

To study

MSE =
j“~[O(~)-O’(~)]2dF

(66)

jj[O(7)]2d7 “

the quantitative difference between the Born

and the Rytov approximations, several hundred simulated

reconstructions were performed. For each simulation, the

exact scattered field was calculated for a single cylinder

with an arbitrary radius and refractive index. The recon-

structions were divided into two sets to highlight the dif-

ference between the Born and the Rytov approximations.

The plots of Fig. 12 present a summary of the mean

squared error for cylinders of 1, 2, and 3 A in radius and

twenty refractive indices between 1,01 and 1.20. In each

case, the error for the Born approximation is shown as a

solid line, while the error for the Rytov approximation is

shown as a dashed line. The exact scattered fields were

calculated at 512 receiver points along a receiver line 10X

from the center of the cylinder.

Only for the 1A cylinders is the relative mean squared

error for the Born approximation always lower than the

Rytov. It is interesting to note that, while the Rytov

approximation shows a steadily increasing error with higher

refractive indices, the error in the Born reconstruction is

relatively constant until a threshold is reached. For the 2A

and the 3A cylinder, this breakpoint occurs at a phase shift

of 0.6 and 0.77r. Thus, a criteria for the validity of the Born

approximation is that the product of the radius of the

cylinder in wavelengths and the change in refractive index

must be less than 0.175.

Fig. 13 presents a summary of the relative mean squared

errors for cylinders with refractive indices of 1.01, 1.02,

and 1.03 and for forty radii between 1 and 40 L Because

the size of the cylinders varied by a factor of forty, the

simulation parameters were adjusted accordingly. For a

cylinder of radius R, the scattered field was calculated for

512 receivers along a line 2R from the center of the

cylinder and spaced at l/16R intervals.
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In each of the simulations, the Born approximation is

only slightly better than the Rytov approximation until the

Born approximation crosses its threshold with a phase shift

of 0.7n-. Because the error in the Rytov approximation is

relatively flat, it is clearly superior for large object and

small refractive indices. Using simulated data and the

Rytov approximation, we have successfully reconstructed

objects as large as 2000A in radius.

D. Phase Error in the Born Approximation

The importance of the total phase shift of the incident

field under the Born approximation was confirmed by

considering the unwrapped phase of the reconstruction. Ho

and Carter [7] proposed that the Born approximation

actually reconstructs an estimate of the object function

multiplied by the total field.

Recall the integral equation (15) which forms the basis

of our reconstruction process:

~,(?) =~O(?’)+0(7’)G( 7-7’)d~. (15)

An alternative to the Born approximation is to define

(67)

and to substitute this modified object function 0’(7) for

0(7) in the integral of (17) above to find

+,(7) =~0’(7’)+o(7’)G( H’)dF’. (17)

Since $.(7) and G(? – ?’) are known exactly, for a single

incident plane wave, the relationship between the scattered

field and 0’(7) is exact. In practice, a tomographic image

is formed using the information from multiple incident

plane waves, and thus the reconstruction of 0’(?) can only

provide approximate information about the failure of the

Born approximation under large phase changes.

It is the relation between our exact estimate for 0’(?)

and the actual object function 0(?) that we would like to

investigate. Under the first Born approximation, we have

assumed that

+o(~)>>+.(~) (68)

and thus to a good approximation

+(7)=+.(7)! (69)

Here

(70)

and thus our reconstruction procedure yields a good esti-

mate of the object.

For objects that do not satisfy the Born approximation,

part of the reconstruction error shows up as a phase shift.

In (23), we estimated that a ray passing through the center

of a homogeneous cylinder undergoes a phase shift of

4i7n8a
Phase Change = ~. (23)

Phase of Reconstruction (Not to Scale)

Refractive Index 1.01 Refractive Index 1.03

Refractive Index 1.06 Refractive Index 1.07

Refractive Index 1.10

Fig. 14.

Refractive Index 1.20

Refractive Index 1.16

Totaf unwrapped phase of the Born reconstnrction for a 10A
cylinder with a refractive index between 1.01 and 1.20.

Thus, to a first approximation, the reconstruction of 0’(7)

is related to the actual object function 0(?) by

0’(?) = o(~) elz~(~j~/~) (71)

where d represents the distance to the boundary of the

object.

This approximate relationship was studied through a

number of simulations. Fig. 14 shows the phase of the

reconstruction of a cylinder with radius 10A and refractive

index that varied between 1.01 and 1.20. The phase of the

reconstruction was unwrapped with a phase unwrapping

algorithm proposed by Tribolet [24] and extended to two

dimensions by O’Conner and Huang [20].

The total phase error at the center of a 10X cylinder is

shown in Fig. 15. While the total phase error does increase
with refractive index at large refractive indices, it is ap -

parent that a more complete theory is needed to estimate

the object function more accurately,

V. CONCLUSIONS

By carefully designing a simulation procedure, we have

isolated the effects of the first-order Born and Rytov

approximations in diffraction imaging. While both proce-

dures can produce excellent reconstructions for small ob-

jects with small refractive index changes, they both quickly

break down when their assumptions are violated. The

assumptions limit the Born approximation to objects where
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the product of the diameter and the relative refractive

index are less than 0.35A and the Rytov approximation to

objects with a refractive index that differ by less than 2

percent from the surrounding media, with essentially no

constraint on the size of the object.

In addition, this paper has presented an alternative

derivation of the Fourier Diffraction Projection Theorem.

This approach will allow for efficient implementations of

higher order reconstruction techniques on digital com-

puters.

Several problems need to be solved for microwave imag-

ing to beeome successful for medical imaging. Foremost,

reconstruction algorithms based on higher order approxi-

mations to the scattered field will be needed. With 4-GHz

microwaves in water, biological structures span tens of

wavelengths and often have refractive index variations of

10 percent or more. In addition, high-frequency microw-

aves suffer from large attenuation in water-based

systems, and an approach that takes into account the

attenuation effects should be studied. Finally, the approach

we have described here is only valid when the effects of

depolarization can be ignored. For a complete solution, a

Vector Diffraction Theorem will be needed.

REFERENCES

[1] A. H. Andersen and A. C. Kak, “ Digitaf ray tracing in two-dimen-
sionaf refractive fields< J. Acoust. Sot. Am., vol. 72, pp. 1593–1606,
NOV. 1982.

[2] _, “Simultaneous algebraic reconstruction technique (SAR~:
A superior implementation of the ART algorithm; Ultrasonic
Imaging, to be published.

[3] M. Azimi and A. C. Kak, “ Distortion in diffraction imaging caused
by multiple scattering IEEE Trans. Med. Imaging, vol. MI-2, pp.
176-195, Dec. 1983.

[4] L. A. Chemov, Wave Propagation in a Random Medium. New
York: McGraw-Hill, 1960.

[5] A. J. Devaney, “A filtered backpropogation algorithm for diffrac-
tion tomography: Ultrasonic Imaging, vol. 4, pp. 336–350,1982.

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

873

Loris B. Greg,oris and Keigo Iizuka, “Visualization of intenmf
structure by &crowave holography;’ Proc. IEEE, vol. 594, pp.
791-792, Mav 1970.
P. C. Ho and W. H. Carter, “ Strncturaf measurement by inverse
scattering in the first Born approximation,” Appl. Opt., vol. 15, pp.
313-314. Feb. 1976.
A. M&m, Wave Propagation and Scattering in Random Media.

New York: Academic Press, 1978.
K. Iwata and R. Nagata, “Calculation of refractive index distrib-
ution from interferograms using the Born and Rytov’s approxima-
tions; Jap. J. Appl. Phys.j vol. 14, pp. 1921-1927, 1975.
A. C. Kak, “Tomographic imaging with diffracting and non-dif-
fracting sources,” in Array Processing Systems, Simon Haykin, Fkf.
Englewood Cliffs, NJ: Prentice Hall, 1984.
J. B. Keller, “Accuracy and validity of the Born and Rytov ap-
proximations; J. Opt. Sot. Am., vol. 59, pp. 1003-1004, 1969.
S. K, Kenue and J, F. Greenleaf, “Limited angle muhifrequency
diffraction tomogral.rhv,” IEEE Trans. Sonics Ultrasonics, vol. SU-
29, pp. 213-217,-Juiy ~982.
L. E. Larsen, J. H. Jacobi, and A. K. Kreyj “Preliminary obser-va-
tions with an electromagneticmethod for the noninvasive analysis
of cell suspensionphysiology and induced pathophysiology~ IEEE
Trans. Microwave Thepry Tech., vol. MTT-26, pp. 581-595, Aug.
1978.
L. E. Larsen and J. H. Jacobi, “Microwave interrogation of dielec-
tric targets: Part 1: By scattering parameters,” Med. Phys., vol. 5,

PP. 500-508, Nov./Dee. 1978.
“Microwave scattering parameter imagery of an isolated

c=e’kidney~ Med. Phys., vol. 6, pp. 394-403, Sept./Ott. 1979.
P. M. Morse and H. Feshbach, Methods of Theoretical Physics.
New York: McGraw-Hill, 1953.
R. K. Mueller, M. Kaveh, and R. D. Iversen, “A new approach. to
acoustic tomography using diffraction techniques,” A coast, Imag.,

vol. 8, pp. 615–628, 1980.
R. K. Mueller, M. Kaveh, and G. Wade, “Reconstructive tomog~a-
phy and applications to ultrasonic” Proc. IEEE, vol. 67, pp.
567-587, 1979.
D. Nahamoo and A. C. K&, “Ultrasonic diffraction imagitr,g,”
School of Ele@caf Engineering, Purdue University, Tech. Rep.
TR-EE-82-20, 1982.
B. T. O’Conrior and T. S. Huang, “Techniques for determining the
stability of two-dimensionaf recursive filters and their application to
image restoration,” School of Electrical Engineering, Purdue Uni-
versity, Tech. Rep. TR-EE-78-18, pp. 6–24, May 1978.
S. X. Pan and A. C. Kak, “A computational study of reconstinction
algorithms for diffraction tomography: Interpolation vs. filtered
backpropagation~ IEEE Trans. A court., Speech and Signal Process-

ing, pp. 1262–1275, Oct. 1983.
A. Rosenfeld and A. C. Kak, Digital Picture Processing, 2nd ed.
New York: Academic Press, 1982.
M. Soumekh, M. Kaveh, and R. K. Mueller, “Algorithms and
experimental results in acoustic tomography using Rytov’s ap-
proximation,” in ICASSP 83 Proc., Apr. 1983, pp. 135-138.
J. M. Tribolet, “A new phase unwrapping algorithm< IEEE Trans.
Acoo.rt., Speech and Signal Processing, vol. ASSP-25, pp. 170-1.77,
Apr. 1977.
W. L. Weeks, Electromagnetic Theory for Engineering Applications.
New York: Wiley, 1964.
E. Wolf, “ ‘rhree-dimensional structure determination of semi-trans-
parent objects form holographic data; Opt. Communicant., vol. 1,
pp. 153-156,1969.
0. C. Yue, E. L. Rope, and G. Tricoles, “Two reconstruction
methods for microwave imaging of buried dielectric anomalie,”
IEEE Trans. Computers, vol. C-24, pp. 381-390, Apr. 1975.

*

Malcolm Slaney (M83) is completing his, Ph.D.
work at Purdue University, West Lafayette, IN,
in the area of microwave and ultrasound tomog-
raphy. He has been a Research Associate at
Purdue from 1981 to 1984 and has worked on
problems in computerized tomography, diffrac-
tion tomography, and depth perception for
robotics.

Prior to joining Purdue, he worked for Bell
Laboratories in the areas of switching systems
software, fault tolerant computing, and



874 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, vOL. MTr-32$ NO, 8, AUGUST 1984

high-speed digital networks. Over the past few years, he afso has consulted
with several companies in the areas of digitaf control systems, X-ray
tomography, and doppler ultrasound.

Mr. Slaney is a member of ACM and Eta Kappa Nu.

*

Avinash C. Kak (M71) is currently a Professor of
Electrical Enzineenng at Purdue University, West
Lafayette, Ifi. His c~rrent research interests are
in computed imaging, image processing, and
artificia3 intelligence. He has coauthored Digital

Picture Processing, vols. 1 and 2 (New York:
Academic), a second edition of which was pub-
lished in 1983. He is an Associate Editor of
Computer Vision, Graphics and Image Processing
(New York: Academic), and Ultrasonic Imaging

(New York: Academic). He was also a Guest

Editor of the February 1981 SDeciaf Issue on Commrted Imazinz of the
IEEE TRANSACTIONSON BIO~DICAL ENGINEEIUN& During &e last ten
years, he has consulted in the areas of computed imaging for many
industrial and governmental organizations.

*

Lawrence E. Larsen (M81-SM82) attended and
received the M.D. degree magna cum laude from
the University of Colorado, Fort Collins, in 1968.
He was awarded an NIH postdoctoral fellowship
in biophysics at UCLA for the period 1968–1970.

He then served in the United States Army as a
Research Physiologist in the Department of i’@
crowave Research at the Wafter Reed Army In-
stitute of Research during 1970–1973. From 1973
to 1975, he accepted a faculty appointment in the
Radiology Department at the Baylor College of

Medicine in Houston, TX, wh=~e he- taught physiology- and computer
sciences. In 1975, he returned to the Walter Reed Army Institute of
Research as the Associate Chief of Microwave Research. He was ap-
pointed the Department Chief in 1977 and presently serves in that role
with the rank of Colonel, Medical Corps. He holds several patents.

Hyperthermia and Inhomogeneous Tissue
Effects Using an Annular Phased Array

PAUL F. TURNER

Abstract —A regional hypcrthermia Annular Phased Array (APA) appli-

cator is described, and examples of its various heating patterns, obtained by

scanning the electric fields with a smafl E-field sensor, are illustrated. Also

shown are the effects of different frequencies of an elliptical phantom

cylinder having a l-cm-thick artificial fat wall and the generaf dimensions

of the humau trunk. These studies show the APA’s ability to achieve

uniform heating at lower frequencies (below 70 MHz) or to focus centraf

heating at moderately higher frequencies (above 70 MHz). The influence

of human anatomical contours in afterirrg heating patterns is discussed

using results obtained with a female mannequin having a thin latex shell

filled with tissue-equivalent phantom. Field perturbations caused by intem-

afly embedded low-dielectric structures are presented, showing the localized

effects of smafl objects whose surfaces are perpendicular to the electric

field.

I. INTRODUCTION

E LECTROMAGNETIC (EM) hyperthermia has been

clinically tested, for the most part, with superficial

tumors in which the response is easily measured, Results

obtained in these clinical trials corroborate findings from

Manuscript received October 12, 1983; revised March 8, 1984.
The author is with BSD Medical Corporation, 420 Chipeta Way, Suite

220, Salt Lake City, UT 84108.

earlier in vivo and in vitro experiments that show this

technique to be capable of selectively treating cancerous

tumors. Much of the real potential of hyperthermia, how-

ever, lies in its ability to treat deep-seated localized tumors

for which surgical removal is not a feasible solution. Such

tumors have consistently presented one of the most dif-

ficult challenges facing both oncologists and technical re-

searchers.

In response to this need, BSD Medical Corporation has

developed an EM Annular Phased Array, or APA (patent

pending), shown in Fig. 1, which has undergone testing
since 1979 and which, during that time, has been shown to

be capable of transmitting heating power directly to central

body tissues [1]. The interaction of the human body and

the EM field generated by the APA has been studied with

phantom models [2], anesthetized laboratory animals [1],

[3], and terminally ill human cancer patients [4], [5], Re-

sults obtained in these trials show that deep regional

hyperthermia is not only possible, but effective in control-

ling solid tumors in the center of the body. (Actual clinical

application of this method is still restricted, primarily
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