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Abstract. Probabilistic models with hidden variables such as proba-
bilistic Latent Semantic Analysis (pLSA) and Latent Dirichlet Allocation
(LDA) have recently become popular for solving several image content
analysis tasks. In this work we will use a pLSA model to represent images
for performing scene classification. We evaluate the influence of the type
of local feature descriptor in this context and compare three different
descriptors. Moreover we also examine three different local interest re-
gion detectors with respect to their suitability for this task. Our results
show that two examined local descriptors, the geometric blur and the
self-similarity feature, outperform the commonly used SIFT descriptor
by a large margin.

1 Introduction

Probabilistic models with hidden topic variables, originally developed for sta-
tistical text modeling of large document collections such as probabilistic Latent
Semantic Analysis (pLSA) [1] and Latent Dirichlet Allocation (LDA) [2], have
recently become popular in image content analysis tasks such as scene classi-
fication [3,4,5], object recognition [6], automatic segmentation [7] and image
annotation [8]. In these approaches documents are modeled as mixtures of hid-
den topics under the assumption of a bag-of-words document representation.
Applied to visual tasks, the mixture of hidden topics refers to the degree to
which each object class, i.e. grass, people, sky, is contained in the image. In the
ideal case, this gives rise to a low-dimensional image description of the coarse
image content, making the description particularly suitable for tasks such as
image retrieval [9,10] and scene classification [3,4,5]. Hidden topic model based
image representations outperform in both tasks previous approaches [9,4].

When applying topic models in the image domain, the first step is to find an
appropriate visual equivalent for words in documents. This is usually done by
quantizing local images descriptors computed for each image. A wide variety of
types of local descriptors has been proposed [11,12,13,14] and they have become
very popular in many computer vision and pattern recognition tasks.

Although a thorough comparison of local descriptors in the context of match-
ing and recognizing the same object or scene is presented elsewhere [15], an
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evaluation between advanced local descriptors in the context of pLSA models
is still missing. In a matching task, the aim is to find precisely corresponding
points of an object or scene in two images under different viewing conditions
such as lightning or pose changes. This requires a very distinct region descrip-
tion. However, in a pLSA based scene classification or image retrieval task we
would like to pool features describing visually similar regions in order to produce
meaningful visual words. Previous works on pLSA based image models only ap-
plied and compared the popular SIFT [11] descriptor or simple color/gray scale
patches [3,4,5]. Bosch et al.’s work [4] proposes a variation of SIFT, taking color
channels into account, in the context of scene recognition with a pLSA model
based image representation.

In this work we compare two recently proposed local features descriptors,
the geometric blur descriptor [13] and the self-similarity descriptor [14] in a
scene classification task using a pLSA-based image representation. Both features
have shown promising performance in image analysis tasks and have not been
considered in the previous comparison [15]. As the SIFT based descriptors have
shown to outperform other features [15], we take results obtained with the SIFT
descriptor as a baseline and we use the classification rate on a previously unseen
test set as a performance measure. Moreover we also evaluate three different
local interest region detectors with respect to their suitability for this task.

2 Approach

In this work we use a pLSA model to represent each image [4]. pLSA [1] was
originally derived in the context of text modeling, where words are the elemen-
tary parts of documents. The starting point for building a pLSA model is to first
represent the entire corpus of documents by a term-document co-occurrence ta-
ble of size M × N . M indicates the number of documents in the corpus and N
the number of different words occurring across the corpus. Each matrix entry
stores the number of times a specific word (column index) is observed in a given
document (row index). Such a representation ignores the order of words/terms
in a document and is commonly called a bag-of-words model.

In order to be able to apply this model in the image domain, we first need to
define a visual equivalent to words in documents. Visual words are often derived
by vector quantizing automatically extracted local region descriptors. This work
uses k-means clustering on a subset of local features extracted from training
images and the cluster centers become our visual vocabulary.

Given the vocabulary, we extract local features from each image in the database
and replace each detected feature vector with its most similar visual word, defined
as the closest word in the high-dimensional feature space. The word occurrences
are counted, resulting in a term-frequency vector for each image document. These
term-frequency vectors for each image then constitute the co-occurrence matrix.
Since the order of terms in a document is ignored, any geometric relationship be-
tween the occurrences of different visual words in images is disregarded.
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Fig. 1. Graphical representation of pLSA model: M = # of images in database, Ni = #
of visual words in image di, observable random variable (shaded) w for the occurrence
of a visual word and d for the respective image document, z = hidden topic variable

Given the co-occurrence matrix, the pLSA uses a finite number of hidden
topics to model the co-occurrence of visual words inside and across images.
Each image is explained as a mixture of hidden topics and these hidden topics
refer to objects or object parts. Thus we model an image as consisting of one
or multiple objects: e.g., an image of a beach scene consists of water, sand and
people. Assuming that every word wj occurring in a document di in the corpus
is associated with a hidden, unobservable topic variable zk, we describe the
probability of seeing word wj in document di by the following model:

P (wj , di) = P (di)
∑

k

P (wj |zk)P (zk|di) (1)

where P (di) is the prior probability of picking document di and P (zk|di) the
probability of selecting a hidden topic depending on the current document, also
referred to as the topic vector. Figure 1 shows the graphical representation of
the pLSA model.

We learn the probability distributions of visual words given a hidden topic,
as well as the probability distributions of hidden topics given a document, com-
pletely unsupervised using the Expectation Maximization (EM) algorithm [1,16].
Probability distributions of new images that are not contained in the original
training corpus are estimated by a fold-in technique [1]. Here the EM algorithm
is applied to the unseen images to compute its topic distribution while keeping
the word distributions conditioned on the topic P (wj |zk) fixed. In our work, we
compute the parameters of a pLSA model on the training data and then apply
this model to the test data using the fold-in technique. Finally, we represent each
image by its associated topic vector P (z|d) which gives us a very low-dimensional
image representation.

For scene recognition the topic vectors of each unlabeled test image are clas-
sified by simple k-Nearest Neighbor (kNN) search through the labeled training
images using the L2-norm as distance metric. We could apply more sophisticated
distance metrics and/or machine learning algorithms such as SVMs to improve
the classification results. As our main goal in this work is to compare different
local feature descriptors and not machine learning algorithms, we have chosen
the simple kNN approach.
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3 Local Feature Descriptors

The image recognition system we describe in this paper starts building the pLSA
based image representation by describing each image with a number of feature
vectors of one kind. Then a vocabulary for that feature is computed as de-
scribed in the previous section and a bag-of words representation is derived for
each image. Local image features are often used in this context as they have the
advantage of being more flexible than global image characterizations, while at
the same time capturing more meaningful patterns than individual pixel values.
Given a predefined interest point at a specified scale (i.e., size of local neigh-
borhood), they describe the local image region surrounding the interest point
compactly by a feature vector. There exists a large number of different types of
local features, e.g. [11,12,13,14], each capturing a different property of a local
image region and being more or less invariant to illumination, changes in view-
point and other image transformations. In the following we will use the term
feature and descriptor interchangeably.

We investigate the performance of the following three local feature descriptors
in the context of the pLSA model:

SIFT [11]: A SIFT feature for a detected interest point is computed by first
calculating the orientation of the most dominant gradient. Then, relative to this
orientation the gradient-based feature vector entries are computed from the lo-
cal gray-scale neighborhood. This is done by dividing the local neighborhood
into subregions and subsequently accumulating the gradient magnitudes of each
pixel into a local orientation histograms. The gradients are then weighted with
a Gaussian window centered at the interest point location. The entries of the
local orientation histograms form the entries of the, in our case, 128-dimensional
feature vector. The vector is normalized to ensure invariance to illumination
conditions. SIFT features are also invariant to small geometric distortions and
translations due to location quantization. They are widely used in several com-
puter vision and pattern recognition tasks. Thus the results obtained with SIFT
features serve us as a baseline here.

Geometric blur [13]: The geometric blur feature vector computation is based
on oriented edge channels, which in our work are computed by the boundary
edge detector proposed by Martin et al. [17]. A sub-descriptor is determined for
each edge channel; the concatenation of all sub-descriptors forms the final geo-
metric blur descriptor. In order to compute a sub-descriptor we collect the values
of sample points in the neighborhood of the interest point. Sample points lie on
concentric circles around the interest point. The outmost circle in this work has
a radius of 20 pixels. The distance between the 6 concentric circles decreases
in a quadratic manner. As twelve equally distributed sample values are taken
from each circle the size of each sub-descriptor is 72 and thus the dimensionality
of the entire feature vector is 288 when using four oriented edge channels. The
value of each sample point is taken from a blurred version of the respective edge
channel; blurring is performed using a Gaussian kernel whose standard deviation
is defined by the distance of the sample point from the interest point.
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Self similarity [14]: To derive the self-similarity feature for an interest point,
first a so called correlation surface is computed for the surrounding neighbor-
hood. We compare a small image patch of size x1 × x1 around the interest point
with the larger surrounding image region of size x2 × x2. In this work we choose
x1 = 5 and x2 = 41. Comparison is based on the sum of square differences be-
tween the gray values. The distance surface itself is then normalized and trans-
formed into a correlation surface, which in turn is transformed into a log-polar
coordinate system and partitioned into 80 bins (20 angles, 4 radial intervals).
The maximum values in each bin constitute the local self-similarity descriptor.
Normalizing the descriptor vector ensures some invariance to color and illumi-
nation changes. Invariance against small local affine and non-rigid deformations
is achieved by the log-polar representation; by choosing the maximal correlation
value in each bin, the descriptor becomes insensitive to small translations.

All investigated feature descriptors are purely based on gray-scale images.
The performance of scene classification, as considered in this work, is likely to
improve by taking color into account (e.g. color SIFT [4]). As this may not be
true for other content analysis tasks using probabilistic topic models such as
object recognition or image retrieval (because here categories might be defined
by shape rather than color), we do not consider color in this work.

We compute local features as described above at predefined interest points
with an associated scale factor defining the size of the supporting image region
around the interest point. In order to be able to compare the different local
descriptors, we will also analyze the behavior of the most common feature, the
SIFT feature, for three different interest point detectors. We will pick the best
performing detector for feature evaluation. The considered detectors are:

– Difference of Gaussian (DoG) detector [11]: Here a DoG pyramid is com-
puted. Interest points are defined as scale space extrema in the DoG pyramid
and are associated with its respective scale. Thus the DoG detector facili-
tates scale invariant computation of the subsequent local feature descriptor
if the supporting region size takes the scale factor into account. Note that in
this approach the number of interest points per image varies as it depends
on the structure and texture in each image.

– Dense grid over several scales: We compute interest points on a dense grid
with spacing d between grid points in x- and y-directions and over several
scales. As all images in our experiments are of the same size, the same number
of interest points is computed for each image.

– Edge sampling [13]: In this approach we require interest points to be located
at positions of high edge energy. First we compute oriented edge channels
by using a boundary detector [17]. Then all edge channels are thresholded
keeping only locations of high edge energy. Interest points are computed by
randomly sampling those locations. For random sampling all edge channels
are considered, nevertheless every position is selected at most once. Note that
in this approach we predefine the number of features per image; features are
computed at one scale only.
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Table 1. Categories and number of images per category in the OT dataset

category 1 2 3 4 5 6 7 8
scene type coast forest highway inside city mountain open country street tall building
nb. images 360 328 260 308 374 410 292 356

Fig. 2. Sample images for each category in the OT dataset

4 Experimental Evaluation

Experimental Setup: We use the OT dataset [18] to evaluate the three dif-
ferent interest region detectors and descriptors in the context of a scene classi-
fication task. The database consists of a total of 2688 images from 8 different
scene categories. The number of images as well as examples for each category
are shown in Table 1 and Fig. 2, respectively. On this dataset we perform im-
age classification by assigning each test image automatically to one of the eight
categories.

We divide the images randomly into 1344 training and 1344 test images. We
further subdivide the 1344 training images into a training and a validation set,
of size 1238 and 106 respectively. We used the validation set to find the best
parameter configuration for the pLSA model. In the model we fix the number
of topics to 25 and optimize only the number of distinct visual words for the
different detectors/descriptors. A number of 25 topics has been shown to give a
good performance for this dataset [4].

Having determined the optimal number of visual words for the current detec-
tor/descriptor combination we re-train the pLSA model with the entire training
set by merging training and validation set. Final results are then computed on
the test set and detector/descriptor performances are compared.

In our experiments, we will first analyze the suitability of three feature de-
tectors in the scene classification task while holding the feature descriptor fixed.
Then we pick the best performing detector to evaluate the local descriptors.

Interest Point Detectors: We select the frequently used SIFT descriptor for
the comparison of the three detectors. Their parameters are set as follows: the
spacing d between grid points is 5 pixels, resulting in about 5250 features per
image when using a factor of 2 1

4 between different scales. The number of ran-
domly sampled edge locations per image is set to 5000. In average a number of
559 features is extracted per image with the DoG detector.
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Fig. 3. Recognition rates on the validation set for the three different detectors over
parameter k of kNN for different numbers of visual words

Fig. 4. Recognition rates on the test set for three different detectors over k for kNN

Figure 3 displays the resulting recognition rates on the validation set for
different numbers of visual words W for all three detectors over the parameter
k of the kNN algorithm. We observe that for the DoG detector, the dense grid
detector over several scales, and the edge sampling detector W = 1000, W = 500
and W = 1000 gives the best recognition results, respectively.

Using these parameter settings we train a pLSA model on the entire training
set for each detector type and fit the test set images to this model in order
to compute a topic vector representation for all images. The comparison of the
recognition results on the test set can be seen in Fig. 4. The dense grid detector
outperforms the other detectors followed by random edge sampling.

This may be due to several reasons: Firstly, both the dense grid detector and
the random edge sampling algorithm compute more features per image than
the DoG detector and also, they compute an equal number of features for each
image. This may enable a better fitting of the pLSA model to the scene recogni-
tion problem. Secondly, the interest points and regions computed by the dense
grid cover the entire image and thus the bag-of-words image representation also
covers the entire image and not only regions close to edge pixels or scale-space
extrema. A further reason might be that in a scene recognition task the repeata-
bility of exact positions and scales, as provided by the DoG detector, may be
not as important as in other tasks such as object recognition where one would
like to match only the exact subpart. The DoG detector offers in contrast to
the other detectors scale invariance. Nevertheless this is also not as important
in scene classification as, e.g., in object detection. All images of one category are
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Fig. 5. Recognition rates on the validation set for the two descriptors for different
numbers of visual words and k in kNN

Fig. 6. Recognition rates on the test set over k for kNN for different local feature types

taken at approximately the same scale. Note that the results are consistent with
previous results [4], where a dense representation performed best, too.

Feature Descriptors: The dense grid detector showed the best recognition
performance in the evaluation above, thus we use this interest point detector
in the subsequent comparison of local feature descriptors. First we determine
the appropriate number of visual words in the pLSA model for each descriptor.
This has already been done for the SIFT feature (see Fig. 3). Figure 5 depicts
the recognition rates for different k in the kNN and different numbers of visual
words, for the geometric blur descriptor and the self-similarity descriptor. The
best results for both features are obtained using 1500 visual words.

For both descriptors we train a novel pLSA model on the entire training set
and compute a topic vector representation for all training and test images. Then
we compare the results of all local features, including SIFT, in Fig. 6.

It can be seen that both, geometric blur and self-similarity features outper-
form the commonly used SIFT feature by more than 5%. Moreover the geomet-
ric blur feature has a slightly better recognition rate, about 1% better, than
the self-similarity feature, and the best recognition is achieved for k = 11 with
78.05%. It should be noted in this context, that a performance difference of
1% is not statistically significant given the small OT dataset. Nevertheless, the
self-similarity descriptor is of lower dimensionality compared to the geometric
blur features: 80 vs. 288 dimensions. This lower dimensionality makes computa-
tions such as clustering and visual word assignment much faster. Moreover, the
self-similarity feature is computed without performing segmentation or edge de-
tection as has to be done to compute the oriented edge channels for the geometric
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Fig. 7. Confusion tables for results on the test set for different descriptor types and a
dense grid region detector. The numbers 1,2,...8 refer to the categories listed in Table 1.

blur feature. Thus, given the similar performance and the more than a magnitude
lower computational complexity over geometric blur, the self-similarity feature
is the prefered feature1.

For a more detailed analysis of the results, the confusion tables for the best
performing parameter settings for each descriptor are depicted in Fig. 7. In the
confusion tables it can be seen that there are some categories, such as forest,
inside city and street, where all descriptors work almost equally well, showing a
performance of over 80% and in the forest category achieving over 90% accuracy.
We also noticed some confusions occur between closely related categories with
similar visual appearance, e.g. open country and coast, tall building and inside
city as well as mountain and open country. In this cases, results might be further
improved by including color.

The largest differences can be noticed in the category tall building where
SIFT has an about 20% smaller recognition rate than both other features. The
geometric blur descriptor significantly outperforms SIFT and self similarity in
the categories coast and mountain, whereas the self-similarity feature performs
best in the open country category.

Finally we would like to examine the variance in performance due to random
initialization in both, the k-means clustering algorithm and the pLSA imple-
mentation. Therefore we choose the parameter and feature setting of the best
performing configuration so far (geometric blur descriptor, W = 1500, k = 11)
and repeat the scene classification experiment on the test set ten times, each
time computing the visual vocabulary and pLSA model with different ran-
dom initializations. The recognition rates range between 77.75% and 79.69%
with an average value of 78.93% and a standard deviation of 0.58%. It can
be seen that there are no large variations between different runs of the same
experiment.

In summary it can be stated that for scene classification geometric blur out-
performs the other features. In cases where fast computation is needed one should
also consider using the lower dimensional and faster-to-compute self-similarity
feature which only performs slightly worse than the geometric blur feature.

1 We have experimented with simpler oriented-edge channel computations than the
one presented by [17], however performance dropped drastically indicating that so-
phisticated edge channel computations are important.
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5 Conclusion

In this work we have studied the influence of the type of local feature descrip-
tors in the context of pLSA based image models and a scene recognition task.
We compare three different local feature descriptors. Our results show that the
commonly used SIFT descriptor is outperformed by the two other feature de-
scriptors: the geometric blur feature and the self-similarity features. Moreover
we also evaluate three different local interest region detectors with respect to
their suitability in this task and we found that a dense grid detector over several
scales performs best. Future work could consist in adopting the best performing
descriptors to color.
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