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ABSTRACT

In this paper we describe the effect of demodulation on speech

signals. We compare two different algorithms for demodulat-

ing audio: the classic approach based on the Hilbert trans-

form and a new approach based on solving a convex opti-

mization problem. We show that convex demodulation better

separates the speech information between the modulator and

the carrier. We demonstrate this advantage by measuring the

speech-information content using a speech-recognition exper-

iment. Finally, we explore the effect of subband filtering on

the demodulation process and the shift of information from

the modulator to the carrier as the subbands become wider.

Index Terms— Modulation, Optimization methods,

Speech recognition, Hilbert transforms

1. INTRODUCTION

There is renewed interest in the fine-temporal structure of

speech signals decoded by the auditory system[1]. Re-

searchers would like to know if the human auditory system is

using the temporal information in a cochlear channel to help

decode speech. This has become especially important for

producers of cochlear implants, which have a limited number

of channels, yet want to deliver the maximum amount of in-

formation to the wearer. This paper reports a decomposition

of the signal into modulators and carriers at several channel

bandwidths and describes the information content of each

with a speech recognition task

Many experiments studying the fine-time structure of

speech signals use a Hilbert transform to decompose the

signal. They further assume the “envelope cues carry most

of the information required for speech identification... with

[the carrier] primarily conveying pitch cues.”[2] The Hilbert

transform, which is based on the analytic signal, is a perfect

demodulator in the simplest case (a single sinusoidal carrier

with a low frequency modulator). But, for more challenging

cases, such as carriers with multiple sinusoids, the Hilbert

envelope mixes carrier and modulator content, resulting in

intermodulation terms in both signals..

∗Gregory Sell was supported by the Ric Weiland Graduate Fellowship

Our demodulation work is based on a new formulation

using convex optimization[3]. Demodulation is inherently an

ill-posed problem with an infinite set of solutions. To select

an optimal solution from this set, we use a cost function to

describe the properties of the optimal estimated modulation

and carrier. In brief, for the linear-optimization criteria we

use in this paper, the optimization method finds a modulator

with minimal high-frequency content that most closely fits the

amplitude of the original signal.

Our analysis is based on a subband decomposition of the

auditory signal. The auditory system performs a rough spec-

tral analysis using the cochlea, and the inner-hair cells trans-

duce different spectral bands of the signal into neural firings.

We show the information content of the estimated modulator

and carrier using two different demodulation algorithms, and

show how the information changes with channel bandwidth.

We do not argue that the brain uses optimization theory

to separate the modulation from the carrier. We use convex

optimization to do the decomposition so we can better un-

derstand the information content in the two signals. In Sec-

tion 3, we describe a simple vowel-recognition experiment to

demonstrate the improvement that can be achieved with con-

vex demodulation.

2. CHANNEL DEMODULATION

Signal demodulation, at the simplest level, is the decomposi-

tion of a signal s(t) in a low-frequency modulator m(t) and a

high-frequency carrier c(t)

s(t) = m(t)c(t).

However, it is also possible to pose the problem as a sum of

modulated sources[4]

s(t) =
∑

k

sk(t) =
∑

k

mk(t)ck(t).

These sources could be defined in any number of ways, but

for most applications, such as modulation filtering[5] and chi-

maeric speech perception studies[1, 6], sk(t) is defined as a

subband channel.
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Fig. 1. Plots of the wideband Hilbert demodulated compo-

nents for the word “pipe” as spoken by a female speaker. The

speech information, both pitch and formants, is easily seen in

both signals.

2.1. Mixing of Speech Information in a Hilbert Modula-
tor and Carrier

The Hilbert envelope, which is defined as the magnitude of

the analytic signal obtained from the Hilbert Transform, is

widely used in demodulation experiments. However, in the

case of wideband modulation, the Hilbert envelope does not

properly separate the speech information between the modu-

lator and the carrier. In fact, the information in the Hilbert

envelope of a speech signal is easily recognizable to a human

listener.

To demonstrate this visually, Fig. 1 shows the spectro-

gram of the wideband Hilbert envelope and carrier derived

from the spoken word “pipe.” Both signals clearly show pitch

and formant information. This indicates that the Hilbert enve-

lope is encoding speech information that a modulator should

not contain, based on the low-frequency constraint.

This failure of the Hilbert envelope demonstrates that the

method is not sufficient for audio demodulation tasks, espe-

cially those that examine the presence of information in the

modulator and carrier, such as chimaeric speech experiments.

We believe that convex demodulation is more effective for

these tasks.

2.2. Convex Demodulation

Instead, we pose the demodulation task as an optimization

problem[3]. In the linear-domain method used in this paper,

the optimization problem uses a cost function that minimizes

the presence of high frequencies using a spectral penalty

W (f), which is a sigmoidal function in the frequency do-

main, as well as minimizing the norm of the modulator.

The optimal modulator is then found by minimizing the cost

function subject to signal-dependent amplitude constraints

designed to ensure the modulator will closely match the

envelope of the original signal. The algorithm specifically

solves the optimization problem:

minimize ||W (f)F{m(t)}||22 + ||m(t)||22
subject to m(t)− 1 ≤ 0,∀t

|s(t)| −m(t) ≤ 0,∀t.

Note that s(t) can be the entire wideband signal, or a

single subband channel. Once the optimization problem is

solved, the convex carrier then follows by dividing the origi-

nal signal by the derived modulator.

The advantage of this method over the Hilbert enve-

lope is that it is specifically designed to solve for a low fre-

quency modulator for any carrier, including the harmonic and

stochastic carriers that result in problematic decompositions

with the Hilbert envelope.

3. SPEECH RECOGNITION AFTER CHANNEL
DEMODULATION

To demonstrate the improved performance that convex de-

modulation offers over the Hilbert envelope for audio tasks,

we designed a speech-recognition experiment to measure the

information content in the two output signals. We used syn-

thesized vowels with random pitch and added noise. We per-

formed the demodulation and then tested to see how much of

the formant information remained. Ideally, the speech (for-

mant) information should be in one signal or the other.

3.1. Methods

The synthetic voice signals were created with the Auditory

Toolbox[7] using the vowels /a/, /i/, and /u/ at a random pitch

between 120 and 300 Hz. Each signal has a random amount

of noise, resulting in an SNR of at least 10 dB, and 6000 ut-

terances were used for each channel bandwidth.

Each experiment consisted of decomposing the vowel

utterances with a filterbank of a certain channel bandwidth.

Each channel was then demodulated using both Hilbert en-

velope extraction and convex demodulation. The channel

modulators and carriers for each case were used to create

wideband components.

Wideband carriers were reconstructed by summing the

extracted channel carriers. Wideband modulators were cre-

ated by multiplying each estimated channel modulator by a

sinusoid at the channel’s center frequency and then summing.

This was used instead of filtered noise because noise is po-

tentially destructive to the spectral content, and the classifi-

cation task we chose only uses the smoothed spectral shape,

and so the sinusoidal carriers in modulator reconstruction did

not play a significant role beyond shifting the modulator spec-

trum to the correct band. Mel Frequency Cepstral Coefficients

(MFCC)[7] of the wideband components were used for clas-

sification.
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Fig. 2. Results for the speech-recognition experiment de-

scribed in Section 3. The graph shows the recognition accu-

racy (and therefore speech information content) for the four

signals plotted against the bandwidth of the channel filters.

A k-nearest neighbors classifier was trained in each case

on demodulated training signals with the same channel char-

acteristics as the test signals. This was selected rather than us-

ing a single classifier trained on real speech because we want

to determine if there is any information present in the modu-

lator or carrier, but not necessarily to see if this information

matches up with the original speech signal well enough for

proper classification. A majority decision based on the five

nearest neighbors determined the classification result.

Signal processing concerns when combining adjacent

channels are not a problem for two reasons. First, the same

processing is applied to all signals. Since the purpose of these

experiments is to compare the signals, the artifacts are con-

sistent across conditions and relative comparisons are valid.

Second, as stated above, the task is based only on identifying

the presence of speech information, not on creating intelligi-

ble audio signals, so distortion of intelligibility to a human

listener is not an issue for this specific task.

This methodology offers the best possible conditions for

Hilbert envelope detection, in that only vowels are used.

Consonants would only provide a greater challenge, and non-

harmonic carriers, as is the case for whispering, for example,

are more problematic for Hilbert envelope detection.

3.2. Results

Fig. 2 shows the recognition accuracy and thus the informa-

tion content of the signals at different channel bandwidths for

both demodulation methods. In the convex case, the modula-

tor yields low accuracy for wideband channel demodulation

(right side) and high accuracy for narrowband demodulation

(left side). The carrier shows the opposite performance. Be-

tween the two extremes, both signals yield moderate recog-

nition, indicating both have information. The X shape of the

two convex curves shows that the speech information shifts

from the carrier to the modulator as the bandwidth increases.

For the Hilbert signals, the results show the modulator

contains the speech information across all bandwidths, while

the speech information in the Hilbert carrier follows a simi-

lar trajectory to the convex case, decreasing its accuracy with

channel bandwidth. Unless a narrowband channel is used, the

speech information is present in both the modulator and car-

rier, demonstrating the inability of the Hilbert transform to

properly separate the two.

While we have built a very strong classifier for this task,

we can only argue that these performance curves represent a

lower bound on the information present in the signal. We have

used MFCC features, just like the state-of-the-art speech-

recognition systems. We trained and tested the classifier on

data with identical bandwidth and noise levels. Yet it is pos-

sible that the demodulation algorithms we have used have put

the vowel information somewhere in the signal that MFCC

features do not see. Humans might do better at this simple

task then machines do.

It is also worth noting that our curve for the Hilbert modu-

lator is significantly different for wideband channels than the

results seen in tests performed by Smith et al [6]. This is be-

cause the two experiments tested different aspects of informa-

tion content. In the experiments performed by Smith et al, the

intent was to find the dominant information content between

the modulator and carrier. Our test determines if information

is present at all in either the modulator or carrier, and the ex-

periment clearly shows that the Hilbert modulator does have

speech information in wideband channels.

3.3. Discussion

Fig. 2 shows the shift in information from the carrier at nar-

row bandwidths to the modulator at wide bandwidths. This is

an interesting effect, and the reason for it is directly related to

the bandwidth of the channels, and its relation to the spectral

spacing of formants in speech.

Depending on the bandwidth of the subband decomposi-

tion, demodulation puts different information in the carrier

and modulator. Channel demodulation, when done properly

as with convex demodulation, yields a low-frequency modu-

lator that only represents the time-varying amplitude envelope

of the channel. The carrier holds all of the relative amplitudes

of the harmonics within the channel. The modulator only con-

tains the overall amplitude of the channel. So, when the car-

riers and modulators from the channels are recombined, the

relative spectral amplitude differences within the channels are

still present in the carrier. However, relative amplitude differ-

ences between the channels are removed from the carrier by

the demodulation, and the modulator contains any relevant

information that is encoded by those differences.

Therefore, information that is found with wider spectral
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Fig. 3. Spectrograms of the convex demodulation compo-

nents of the word “pipe” at three channel bandwidths.

spacing than the channel bandwidth is placed in the modula-

tor, because the relative amplitudes of the channels can en-

code it. Information that is found with a narrower spectral

spacing than the channel bandwidth is placed in the carrier.

We can see this in the convex signal performances in Fig.

2, where the speech information moves between the carrier

and the modulator in the range of 300-700 Hz, roughly. This

is a reasonable range for the spacing of the formant frequen-

cies in the vowels used for the experiment. So, the speech

information moves from the modulator to the carrier as the

channel bandwidth increases into and then past the formant

spacing. The modulator performance does not drop until the

channel bandwidth exceeds 2000 Hz, which is roughly the

widest formant spacing in the vowels used.

Fig. 3 illustrates this tradeoff between formant informa-

tion in the carrier versus the modulator. This figure shows

the modulators and carriers determined at three channel band-

widths. With narrowband channels, the formant and even

pitch data can be seen in the modulator in Fig. 3(b), while

the carrier in Fig. 3(a) is missing most of that information. In

a mid-range bandwidth, the formant data is clearly present in

the modulator in Fig. 3(d) while the pitch is in the carrier in

Fig. 3(c). For a wideband channel, the carrier in Fig. 3(e) has

all of the relevant speech information while the modulator in

Fig. 3(f) has only the overall amplitude of the signal, contain-

ing no speech information beyond the plosive consonant ‘p’

at the beginning of the file.

This example is extremely relevant to the demodulation

problem, because it clearly shows that the definition of mod-

ulation and the information its components contain is highly

dependent on the channel filter bandwidth.

4. CONCLUSION

Identifying the speech and voicing information via demodu-

lation of a signal is an important task for improving perfor-

mance of cochear implants and hearing aids, among other ap-

plications. We presented results demonstrating that convex

demodulation separates speech information between modula-

tors and carriers, even for wideband channels, where Hilbert

does not separate the information. This advantage is evident

for the simplest speech-like test signals, stationary vowels.

Properly separating the demodulation components is essen-

tial for rigorous testing of the location of speech informa-

tion, and so it is our opinion that convex demodulation offers

higher quality decompositions for future experiments testing

the presence of speech information in demodulated signals.
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