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Abstract. This paper describes an algorithm to cluster and segment se-
quences of low-level user actions into sequences of distinct high-level user
tasks. The algorithm uses text contained in interface windows as evidence of
the state of user—computer interaction. Window text is summarized using la-
tent semantic indexing (LSI). Hierarchical models are built using expecta-
tion—maximization to represent users as macro models. User actions for each
task are modeled with a micro model based on a Gaussian mixture model to
represent the LSI space. The algorithm’s performance is demonstrated in a
test of web-browsing behavior, which also demonstrates the value of the tem-
poral constraint provided by the macro model.

1 Problem Statement

To design interfaces that effectively support human-computer interaction, we must first
understand the complex behavior computer users exhibit when carrying out their jobs.
Apple Computer, for example, popularized an approach to interaction design based on
observing users as they perform their work and then analyzing how users interact with
specific software components [8]. This type of interaction design optimizes interfaces
for individual users performing individual tasks. Our approach, by contrast, supposes
individual users constantly shift among tasks, seamlessly interleaving low-level activi-
ties in the pursuit of high-level goals [3]. Here, we describe a method for modeling users
engaged in a sequence of many different tasks.

Models of multitasking users can be used by adaptive or attentive user interfaces [2,
10, 11], which monitor user behavior in order to anticipate user needs. These sorts of
systems aim to automatically provide users with additional information just when it
would be most helpful. By relying on a user model that keeps very close tabs on users
shifting tasks, such systems can potentially provide very precisely targeted information.

Our approach of modeling multitasking users has applications beyond the creation
or adaptation of individual user interfaces. For instance, a corporation might want to un-
derstand the behavior of a computer system used by large number of employees, as they
use a number of applications to perform their tasks, and optimize overall system cost.
This sort of large-scale interface optimization requires understanding the behavior of a
large number of users as they move from task to task during the day.

In this paper, we describe a method for discovering and building a hierarchical
model of user activities from unlabeled data. Given a trace of user activities, we seg-
ment the user data and learn multiple micro models, each corresponding to a separate
“task.” Each task is defined by a set of actions that are represented as a single micro
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model. A macro model controls switching between micro models of individual tasks.
These models can take many forms, including discrete Markov chains and continuous
hidden Markov models (HMM) [7]. We demonstrate the time-series clustering algo-
rithm with a simple web-browsing example.

2 Related Work

Work in user modeling has focused mainly on building a single model of a user's activ-
ities. For instance, Davison and Hirsch [4] describe a system called IPAM that builds a
table which predicts the next command given a list of past commands. At any point in
time, they predict the most likely next command by indexing into a table with the last
N commands (where N is between 0 and 5). The table is updated in real-time as the user
enters new commands and the correct Unix command is predicted upwards of 70% of
the time. In our approach, each micro model makes the same type of predictions as
IPAM, but our macro model captures the relationship between a set of tasks with dif-
ferent probabilities.

Horvitz and his colleagues [6] describe a system that uses a Bayesian model to infer
a software user’s goals. They developed a language to link the user’s and computer’s
actions to elemental features that can be used by the inference engine. In this work, we
use the text showing in an active window to judge the state of the interactive system.

Westphal and Syeda-Mahmood [14] learn a model of user's behavioral state as they
interact with a video browser. Given a sequence of low-level events such as “fast for-
ward” or “play” the system learns user's states such as “aimless browse” or “found
something interesting”. Their approach is supervised; they train the system with a small
set of labeled data. The user states their goal and the system then learns the correspond-
ing pattern of low-level events. Our approach on the other hand is completely unsuper-
vised. (Although in a real application somebody would probably look at the micro mod-
els and assign them names.)

Our work builds on the hidden Markov experts ideas proposed by Weigend [13].
His goal was to automatically cluster the time-series data and build models that predict
different portions of the data with different experts. Our goal is to simply label the data
and we extend Weigend’s work by using a novel text feature to capture the user’s state.

3 Hierarchical Segmentation Algorithm

We cluster time-series data with a hierarchy of models. Figure 1 illustrates the basic
model. In this work, a set of high-level models with three states (5;) determines the high-
level behavior of the signal. For instance, each macro state (S;) might correspond to one
speaker in a speaker-segmentation task, one user task in a user-interface interaction rec-
ognition task, or one type of multimedia content. We assume that the system can move
from one macro state to another at any time, under control of transition probabilities that
are assumed or learned from the data. Each macro state controls execution of its own
micro model, which outputs feature vectors based on its own transition and output prob-
abilities. The macro state of the system is hidden, except for the change in feature output
probabilities captured by the different micro models. Each macro state controls a micro



Fig. 1: A hierarchy of models. a) The general model is a macro model with states Si, each macro
state has its own micro model (mi) of arbitrary complexity to generate output data. b) A specific
form of hierarchical model with micro models implemented using five-state fully-connected
Markov models. ¢) A continuos model where each micro model is implemented using Gaussian
mixture models (GMM). This is the form described in this paper.

model that generates features we can observe. These micro models can take many dif-
ferent forms.

A discrete hierarchical model is shown in Figure 1b. In this case, we are interested,
for example, in modeling a user’s interaction with a computer interface using a discrete
set of features. When a user is performing the “create a database” task, he or she will
step through particular dialog boxes and tabbed windows. When in the “file open” dia-
log box, the probability that the user will go to the “name database” dialog box will de-
pend on whether the “create a database” macro model is active. We model the system
with a set of (hidden) macro states described by a Markov model. Each micro model is
represented by its own Markov model, where the micro-state output is equal to the state
label. The model in Figure 1b generates signals that switch between models. When de-
scribed this way, the model is not a simple hidden Markov model.

Figure 1c shows the model structure described in this paper. In this case the macro
states of the system are described with a Markov model, each macro state controlling a
single micro model implemented with Gaussian mixture models (GMM). A GMM mi-
cro model corresponds to the output probabilities in a conventional HMM. This type of
model is good for data with little structure and continuous features such as for speaker
segmentation and for modeling and labeling multimedia data.

Figure 2 shows an overview of the hierarchical segmentation algorithm we use to
cluster, segment and summarize the user’s actions. We use the text on the user’s screen
at each point in time as input to this algorithm. Latent semantic indexing (LSI), de-
scribed in Section 3.1, encodes the interface’s text as a multidimensional feature vector
as a function of time. The best segmentation of the user signal and the parameters of the
micro model are estimated using the expectation—maximization (EM) algorithm as de-
scribed in Section 3.2.
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Fig. 2: Block diagram of the hierarchical clustering and segmentation algorithm.



3.1 Text Features via LSI

Actions need to be encoded in a manner that allows us to associate probabilities with
the user’s events. In this work we consider the text on the screen, due to the user’s ac-
tions, as a good indication of what the user is trying to do. A “Print” dialog box contains
words about printing, while a help page gives information about the options a user has.
There are many ways to describe an action. One application might use the words “open
document” while another might use “open file.” Latent semantic indexing (LSI) gives
us a feature set that spans these differences [5].

We use LSI to form a feature vector that summarizes the text contained in each win-
dow displayed to the user. LSI is often used in information retrieval to cluster docu-
ments and for determining the similarity between a document and a semantic query. LSI
creates a bag-of-words model for each document. A term-frequency histogram is
formed by counting how many times each word occurs in each document, regardless of
what words precede or follow each word. This data is then used as input to a singular-
value decomposition (SVD) that finds a low dimensional sub-space that approximates
the original histogram space.

A feature space based on LSI solves two difficult problems associated with seman-
tic information retrieval: synonyms and polysemy. Often, two or more words have the
same meaning—synonyms. For information retrieval, we want to use any synonym to
retrieve the same information. Conversely, many words have multiple meanings—pol-
ysemy. For example, apple in a story about a grocery store is likely to have a different
meaning from Apple in a story about a computer store.

Changes in semantic space are based on angles, rather than on distance. A simple
“sentence” such as “Yes!” has the same semantic content as “Yes, yes!” Yet the second
sentence contains twice as many words, and, in semantic space, it will have a vector
magnitude that is twice as large. After computing the SVD and projecting the raw his-
togram data into a low-dimensional subspace, we normalize! each document vector so
it has a vector length of 1. This normalized vector is a semantic feature that describes
what we know about the user's actions at each point in time.

In this work, we use GMMs to form the micro models that describe each task. A
GMM models the probability distribution of semantic events that form one task using a
sum of N, Gaussian “bumps” [7]. This is a simple model since any one topic (repre-
sented by one Gaussian) can follow any other topic (another Gaussian) with equal prob-
ability. Richer micro models are also possible.

3.2 Training

We use the EM algorithm to train a hierarchy of models. Given an initial set of models,
we compute the best macro- and micro-level models. All the data corresponding to a
macro state are used to train the micro model corresponding to the macro state. We re-

1. Note, normalizing all document vectors so they have unit length does not make the pat-
tern discrimination easie—we lose information when this is done. But the resulting vec-
tors all lie on the unit sphere and are a better match for the diagonal-covariance GMMs
we use to model their distribution.



peat the procedure until we reach a stable solution. Training the micro model involves
estimating the output probabilities of the GMM.

The segmentation training algorithm is a straightforward application of EM. We de-
scribe the approach by segmenting a discrete signal with N multidimensional points and
finding N, clusters with N, states in each micro model. The topology is shown in Figure
1c. More details on this class of algorithms is in Weigend’s paper [13].

Assumption: We assume that the macro model has N, states, with a self-loop probabil-
ity of 1 —& and a probability of a transition to any other state of e/(N_.— 1) . This simple
model encourages temporal continuity on the macro-state sequence. It is equivalent to
saying that on average a user spends 1/(1 —¢) time steps performing each task, and any
one task is equally likely to follow any other task. Richer models, as represented by dif-
ferent Markov macro models, do not change the algorithm shown below.
Initialization: Choose N,— 1 points in the region (1, N) . These points define an initial
segmentation. If any segment has too few points, choose a new segmentation. For each
segment, build a micro model (m;) which captures the transition probabilities. These are
the initial m; models. See Section 3.3 for more details.

E-step: Given the models, use the Viterbi algorithm [7] to find the path through the lat-
tice that has the maximum likelihood. We can use this path to decode the signal and de-
cide the macro and micro states that are most likely to generate each portion of the sig-
nal.

Termination test: Exit this loop when (a) the signal’s temporal cluster assignments do
not change or (b) after 10 iterations.

Degenerate check: Make sure that all models are used to cluster some portion of the
signal. If there is no data assigned to one model (3£;) then find the cluster (34;) with the
largest temporal support. Concatenate all the segments assigned to M; and split this sig-
nal at a random point. Model M; is relearned from the portion of the signal before the
split point; Model M, is relearned from the portion of the signal after the split point. See
Section 3.4

M-step: For each cluster (M;) concatenate all the chosen portions of the signal. Build a
new model (m;) which captures the transition and output probabilities of the data at this
state. Return to the E-step.

The micro model, m;, used in the E-step and trained in the M-step can take many
forms. It can be a time-varying Markov model or a simple GMM as we describe in the
rest of this paper.

In practice, the performance of this algorithm depends on how the models are ini-
tialized and what happens when a model becomes degenerate because it no longer wins
any of the time-series data in the E-step.

33 Initialization

Clusters with a k-means algorithm [7] are often initialized with a random data point
from the data set. The temporal micro models are more complicated so we need to use
more data. We had the best success segmenting the initial training data into N, non-
overlapping random-length segments and using each segment to train one of the N,
macro models that describe the data clusters. Initializing the models with random tran-
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sition probabilities did not work since the space of random models is so large and often
one model is much closer to the data than the rest and wins all the data points in the ini-
tial (E-step) segmentation.

34 Degenerate Models

Occasionally we saw cases were one (macro) model captures none of the data in the
time series. There is no data to retrain the model so it needs to be reassigned. We tried
several approaches to address this problem.

1) Look at each segment and its winning model. For each segment calculate the neg-
ative log-likelihood (NLL) of the data given its assigned model. We normalize each
NLL by the number of data points so we can compare different sized segments. Choose
the segment with the highest NLL (the worst fit to the data) and assign it to the missing
cluster.

2) Split the model with the largest support by perturbing this model in two different
directions. This is a common approach in data clustering, and is relatively easy to per-
form since one can do the perturbation along the major axis of the modeled data and
effectively split the cluster into two along its major axis. We chose to perturb the tran-
sition matrix by a small random amount.

3) Find the cluster with the largest support (most data points) and split it at a random
point in time. Train a new model for the original cluster with the first section of the data,
and train a model for the missing cluster using the second half.

The last approach was the most successful, perhaps because the random segment
sizes never came up with the same answer twice. Often the first attempt, in all the ap-
proaches above, fails and one model remains degenerate. The random segmentation ap-
proach often finds its way out of a locally degenerate situation.

3.5 Learning the Model Structure

There are two common means to build the necessary number of models and to decide
how many models or clusters are necessary. Often in k-means a single model is learned
from all the data. One model or cluster is added at each stage by splitting the largest
cluster and retraining all models using the procedures described in Section 3.2. Alter-
natively, one can start with N random models and learn the right number of models all
at once.

Meignier [11] suggests an approach where a single global model is split by remov-
ing a small portion of the data that best fits the model. This small portion is used to train
anew model and the original model is trained on the remaining data. If the data is close-
ly clustered then each iteration picks out the centroid of the data and builds the new
model and leaves the remainder of the data to be modelled more poorly with the global
model. This approach did not work well in our simulations compared to the random-
segment approach.

3.6 Performance Evaluation

The approach described in this report is completely unsupervised; there is no reason that
the (macro) model labels generated by our learned models should agree with the macro
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labels used when generating the test data. We want to compare the structure of the
learned model with the labeled data. There are information-theoretic approaches to
finding the optimal mapping, but for small numbers of states we can use a brute-force
approach to enumerate all possible label permutations and choose the one which gives
the smallest decoding error.

4 Illustrative Example

In practice, we expect that the text content of all windows and dialog boxes displayed
to the user will form the input signal for this work, but we have not instrumented our
systems to capture this data yet. Instead, we illustrate the behavior of our algorithm us-
ing a multi-tasking web-browsing example. Using the log from a web proxy [9], we col-
lected a sequence of uniform-resource locators (URLSs) as a user looked for information
on a series of three different topics: (1) PERL hash, (2) molecular biology hmm, (3) sud-
den oak disease. We used Google [1] to find appropriate pages on these topics. About
20 pages were selected from each topic in order, and then the three topics were revisited
in order again.

For each URL that was logged, we used a text-only web browser to gather the con-
tents of the page. We used simple heuristics based on the file suffix to remove uninter-
esting URLs (such as images and code) and then used simple heuristics based on the
average distance between space characters to decide if the URL pointed to a web page
containing text. The text on each web page is a single document for LSI analysis. In this
experiment, the user visited a total of 155 web pages.

We used LSI to reduce the semantic feature vector from 8009 dimensions (the total
number of distinct words, after removing stop words, in all documents) to a three-di-
mensional space. The resulting feature vectors are shown in Figure 3. Note the three
clusters are distinguishable by drawing lines between the clusters, although there would
be some errors with simple discriminators such as GMMs.

We modeled the data assuming a fully-connected three-state Markov model. We
expected the model to use one state per semantic topic and properly segment the web-
browsing data by topic. Each micro model was implemented using a two-component
GMM. Each GMM estimates the probability that a (3D) point in semantic space is seen
in this macro state.

Figure 4 shows the original and the reconstructed segmentation and macro-state se-
quences. The EM algorithm converged to the correct answer; each portion of the signal
was assigned to the correct model although the labels are permuted. This reconstruction
converged—reached a stable segmentation—after three iterations. Figure 5 summarizes
the learned GMM micro models.

The macro model provides an important temporal constraint. In its simplest form,
the self-loop probability suggests that a user stays in one task for a number of time steps
before moving to a new task. Without this constraint, the model makes a locally optimal
decision and is free to predict that at each time step the user jumps to a different task.

The time-series constraint is important because it smooths out noisy data. A user
might visit a web page that is independent of task (i.e. the Google home page) or see a



Fig. 3: Raw data in a 3D LSI feature space for the experiment described in Section 4. The data
marked by ‘x’ represents PERL pages, ‘*’ represents molecular biology, and “+’ represents oak
disease. Note the classes are not separable with simple decision surfaces.

dialog box that is common to all tasks (i.e. a print dialog). We want to ignore these com-
mon, information-free windows since they do not tell us anything about the task.

Figure 6 shows a typical segmentation learned by the hierarchical EM algorithm
with no temporal constraint. The self-loop probability was set to 0.33 so that each state
had a 33% probability of being used. In this example, the state labels match the original
labels, but there are many single point errors. About 25% of these labels are incorrect
when using the simple 2-component GMMs to represent each cluster probability. A
more sophisticated model can make the proper distinctions and discriminate between
these data. In this switching-task model of user behavior the macro model constrains the
solution and allows a simple GMM to perform without errors (See Figure 4). The dif-
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Fig. 4: The original and reconstructed sequence of user states. In the original data, the 3 differ-
ent topics were encoded as: 1 is PERL, 2 is molecular biology, 3 is oak disease. The labels on the
reconstructed state sequence are arbitrary, and can be permuted as they are in this example. With
the ideal permutation, the reconstructed sequence matches the original exactly.
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Fig. 5: Each of the three micro models are implemented with 2-component, 3-dimensional
GMMs, which are summarized by the ellipses shown above. (Only the two of the three most im-
portant LSI directions are shown in this plot.)

ferences in the results shown in Figures 4 and 6 are due to the power of a global decision
versus a local decision.

5 Future Work

In this paper, we reported simulation results for a single type of hierarchical model.
Much more remains to be done. A thorough test and evaluation requires collecting more
data of web browsing and ordinary computer use to try to characterize realistic user
tasks. Attentive user interfaces (e.g., [10]) can be built around this sort of complex mul-
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Fig. 6: Reconstrctured state sequence without the temporal constraint. This is equivalent to clus-
tering the raw data into three clusters and thus the actions at many points in time are misclassified.
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titasking user model, and can be evaluated in comparison to simpler text-based user
models. Data from large numbers of computer users in large corporations can be aggre-
gated and analyzed to begin to understand how people really spend their time, possibly
informing the design of corporate applications and systems. By capturing user behavior
in models that take account of multitasking, we can finally develop tools that support
how people naturally work.
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