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Abstract
Enhancing speech perception in everyday noisy acoustic environments remains an outstanding
challenge for hearing aids. Speech separation technology is improving rapidly, but hearing devices
cannot fully exploit this advance without knowing which sound sources the user wants to hear.
Even with high-quality source separation, the hearing aid must know which speech streams to
enhance and which to suppress. Advances in EEG-based decoding of auditory attention raise the
potential of neurosteering, in which a hearing instrument selectively enhances the sound sources
that a hearing-impaired listener is focusing their attention on. Here, we present and discuss a
real-time brain–computer interface system that combines a stimulus–response model based on
canonical correlation analysis for real-time EEG attention decoding, coupled with a
multi-microphone hardware platform enabling low-latency real-time speech separation through
spatial beamforming. We provide an overview of the system and its various components, discuss
prospects and limitations of the technology, and illustrate its application with case studies of
listeners steering acoustic feedback of competing speech streams via real-time attention decoding.
A software implementation code of the system is publicly available for further research and
explorations.

1. Introduction

Listeners with normal hearing can follow speech
in ‘cocktail party’ scenarios with competing speech
sources by selectively attending to relevant speak-
ers (Cherry 1953, Yost 1997). Hearing loss greatly
reduces this ability, even when the sound input to the
ear is amplified by a hearing aid (Bronkhorst 2000).
Consequently, difficulties with communication in
everyday noisy situations continue to be the most
common complaint from hearing-aid users (Kochkin
2010, Lesica 2018). Acoustic amplification or noise
suppression in hearing aids can restore some level

of audibility, and sound separation algorithms can
suppress unwanted sounds to some degree, but the
hearing aid cannot help a user follow an individual
speech stream among many without knowing which
stream the user wants to listen to. Even if the hear-
ing instrument could perform high-quality acoustic
scene analysis and separate all the individual sound
sources in a complex acoustic environment, it still
needs to know which sound sources to enhance and
which to suppress. This requires a user input to the
hearing aid.

Consequently, the idea of a cognitively controlled
hearing aid has been proposed to overcome this basic
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challenge (cocoha.org, Dau et al 2018, Slaney et al
2020, Geirnaert et al 2021). If a user’s selective aud-
itory attention can be measured from brain signals,
then the brain-decoded attention signal can be used
to control a speech separation process within the
hearing instrument. The attention signal would then
be used to control the relative levels of competing
speakers in real time. Such a hearing instrument
would constitute a form of neural prosthesis that
assists the hearing-impaired listener by automatic-
ally enhancing relevant sound sources in a complex
acoustic scene.

The vision of this neuro-steered hearing techno-
logy has been fueled by successes in auditory atten-
tion decoding from EEG or other neurophysiological
signals (Mirkovic et al 2015, O’Sullivan et al 2015,
Akram et al 2016, Aroudi et al 2016, Van Eyndhoven
et al 2016, Miran et al 2018, Ciccarelli et al 2019). In
offline attention decoding studies, a main direction
has been to examine the correlation between continu-
ous EEG responses to speech mixtures and acoustic
stimulus features of competing speech streams (Ding
and Simon 2012a, O’Sullivan et al 2015). The main
observation is that low-frequency cortical activity
(<10 Hz) synchronizes with slow fluctuations in the
speech envelope (<10 Hz) and that this synchroniza-
tion is stronger for attended speech streams compared
to ignored ones (Mesgarani and Chang 2012, Power
et al 2012, Ding and Simon 2012b, Golumbic et al
2013). In seminal work, O’Sullivan et al (2015) used a
linear regression model to reconstruct speech envel-
opes from continuous multi-channel EEG responses
to natural speech. When selectively attending to one
speaker in a two-talker mixture, the speech envel-
opes reconstructed from the EEG responses were
more correlated with the envelope of the attended
speech stream compared to the ignored one. This,
in turn, allowed listeners’ attention to be predicted
from single-trial (1 min) EEG data (O’Sullivan et al
2015). Later studies have demonstrated that EEG-
based attention decoding with similar models can
also be achieved in more realistic acoustic scen-
arios (Fuglsang et al 2017, Aroudi et al 2019), with
shorter EEG data segments (Ciccarelli et al 2019, de
Cheveigné et al 2021, Thakkar et al 2024), and in older
listeners with hearing loss (Fuglsang et al 2020).

These successes obtained in an offline setting
with sustained attention tasks raise hope for a real-
time implementation where the brain-decoded signal
steers the acoustic feedback to the listener to facilitate
comprehension (e.g. in a hearing aid). In a real-
time system, EEG decoding is coupled with an acous-
tic speech separation system that separates differ-
ent voices in the listening space. The decoded atten-
tion signal controls the relative gains of the separated
channels, enhancing attended sources and suppress-
ing interfering ones. The change in the relative level

of the speech sources influences the neural response
(Ding and Simon 2012a, Das et al 2018), creating a
closed feedback loop (see figure 1). This closed loop,
of which the user is a part, immediately raises sev-
eral challenges. For instance, if an ignored speech
stream has been attenuated by the brain–computer
interface (BCI), can the user then switch attention
to that stream? Is there a minimum amplitude below
which this is no longer possible? Does visual feed-
back affect this situation, for example by helping to
decode a stream when its audibility is low? How tol-
erant are users to inevitable processing latency and
errors? How accurate and fast must the device be to
be usable in real-life communication?How should the
acoustic signal be rendered to the user (spatialization,
etc)? How can the acoustic speech separation strategy
be integratedwithin the small form factor of a hearing
aid? Should the BCI seek to enhance attended sources
or suppress ignored ones? Does the benefit require
training, and can typically elderly hearing-impaired
people adapt to the device and learn to harness its
power?

Here we present a real-time implementation of
such a closed-loop auditory attention decoding sys-
tem. Our system addresses each requirement of a
real device (hardware, software, usability) as explored
within in the COCOHA project (https://cocoha.
org/). It consists first of a wireless multi-microphone
hardware platform that performs online low-latency
acoustic speech separation via spatial beamforming.
Next, an attention decoding module performs online
analysis of the correlation between speech stimulus
features of the separated speech streams and continu-
ous EEG signals. By correlating the EEG to envel-
ope features of each speech stream in a mixture, the
decoder identifies the attended stream as the most
correlated one. The decoded attention signal is then
used to steer the relative gains of the separated speech
streams to enhance the attended speaker in the acous-
tic feedback to the listener.

Real-time attention decoding was pioneered at
the Telluride Neuromorphic Engineering Workshop
in 2012, which inspired several of the offline studies
mentioned above (O’Sullivan et al 2015).More recent
attempts have focused on online decoding (Zink et al
2016, Aroudi et al 2021) or hardware implementa-
tion (Ha et al 2023). Our system, completed in 2018,
presents an ambitious attempt to integrate hardware
components for speech separation and brain decod-
ing into one system (Wong et al 2018b). The cur-
rent paper presents an overview of this work. In
section 2 we describe the various components of the
system in overview. Section 4 shows demonstrations
of real-time gain steering of competing audio signals
in listeners with hearing impairment and with visual
inputs of the speakers face. Details of the implement-
ation and the demonstrations are given in section 3.
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Finally, we discuss the limitations and prospects of
the cognitively controlled hearing technology in a
broader context in section 5.

2. The real-time system in overview

2.1. Overview of the system
Figure 1 shows an overview of the real-time system.
First, mixed sound signals in a free-field acoustic
environment are picked up by a wireless microphone
array placed in the listening space. A hardware plat-
form synchronizes microphone signals between each
other and performs low-latency beamforming to out-
put separate speech streams corresponding to N dif-
ferent speakers in the listening space (section 2.2).
Concurrently with this audio processing, EEG sig-
nals are recorded from the listener’s scalp and syn-
chronized with the audio signals. Synchronized EEG
and audio signals are then streamed to an attention
decoding module (section 2.3). The attention decod-
ing module estimates which stream is currently being
attended to by the listener, and this knowledge is used
to modulate the relative gains of the audio channels
in the mixture (section 2.4). The re-rendered audio
mixture with the attended speaker enhanced is then
presented to the listener via an insert earpiece (e.g. a
hearing aid speaker).

2.2. Microphone array platform and acoustic scene
analysis
Modern hearing aids are equipped with multiple
microphones that allow the signal-to-noise ratio
(SNR) of the sound to be improved via array pro-
cessing. However, the close spacing between micro-
phones, and distance from sources (both target and
interferers) severely limits this benefit. We identi-
fied this as a serious bottleneck, and thus investig-
ated the option of an ad hoc array of distributed
microphones, communicating wirelessly. In an ad
hoc array, the microphones occupy arbitrary posi-
tions, and the beamformer adapts to this geometry (in
contrast to preset array geometries commonly pro-
posed in the literature). This allows for large inter-
microphone distances and potential proximity with
sources.

For flexibility, we designed a microphone-
equipped module capable of serving both as a remote
node, and as a proximal node connected to the hear-
ing aid (which can also function in the absence of
remote nodes). This custom microphone/wireless
hardware platform (called WHISPER) is described in
detail in Kiselev et al 2017 and Ceolini et al 2020b.
In brief, each module supports up to four micro-
phones (see figure 2), and can be combined to form a
sensor network of any arbitrary number.Microphone

signals are synchronized wirelessly between mod-
ules, and the array can then be used for low-latency,
high-quality speech separation via beamforming
computed locally on the platform. Local comput-
ing capabilities allows the computational burden
of potentially complex separation algorithms to be
distributed.

Theory allows for infinite interferer rejection
as long as the number of microphones is at least
equal to the number of sources (target and interfer-
ers). However, in the presence of noise and rever-
beration, or for certain degenerate configurations,
a larger number of microphones may provide bet-
ter performance, as observed empirically. It also
offers leverage to minimize spectral distortion of
the target as a result of propagation and spatial
filtering.

WHISPER can be used to deploy any separation
or enhancement algorithm given its ability to run
floating-point algebra. For our real-time BCI, we used
the simple but powerful minimum-variance distor-
tionless response (MVDR) beamforming algorithm.
In evaluations of speech separation quality within a
reverberant room with 2–4 speaker mixtures (with
a priori SNR = 0), MVDR on WHISPER obtains
a signal-to-distortion (SDR) of ∼6 dB using 1
WHISPER node (4 microphones), and ∼9 dB SDR
using 3 nodes (12 microphones, see Ceolini et al
2020b). This corresponded to a short-time objective
intelligibility score of 0.6 and 0.9, respectively. We
have also evaluated WHISPER running other similar
beamforming algorithms, such as the speech distor-
tion weighted multichannel Wiener filter, maximum
SNR, masked-based MVDR or mask-based general-
ized eigenvalue, with equivalent high performance
(Ceolini et al 2020b). Notably, WHISPER can also
be used to deploy high-performing speech enhance-
ment algorithms based on deep neural networks (see
Ceolini and Liu 2019).

Achieving low latency is critical for successful
applications in hearing technology. Two terms con-
tribute to latency: that of the beamformer calcula-
tion (roughly 11 ms for a 512-sample buffer with
75% overlap at 24 kHz (see Ceolini et al 2020b)), and
that of the wireless transmission protocol. WHISPER
was implemented with off-the-shelf wireless pro-
tocols, the optimization of which is a target for
future work. A third, negative term applies to dis-
tant sources as a result of faster wireless than acoustic
transmission.

A demonstration of our BCI shown in section 4.1
belowwere conducted using a singleWHISPERmod-
ule (with 4 microphones) wired to a remote laptop
running an MVDR beamformer. In this situation,
the processing latency is essentially the algorithmic
latency, roughly 11 ms.

3
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Figure 1. The cognitively controlled hearing aid in overview. Speech is picked up by an ad hoc array of microphones and
processed to produce clean speech streams, one per speaker. Continuous EEG signals from the user are synchronized with the
separated audio streams and transmitted to an attention-decoding module that classifies the attended speech stream based on
correlations between audio and EEG features. The time-varying classification outputs are then used to control the relative gains of
the separated audio streams.

2.3. Attention decoding
The real-time attention decoding pipeline is illus-
trated in figure 3. The decoder receives the sep-
arated audio streams from the microphone plat-
form and multichannel EEG amplifier using
LabStreamingLayer (Kothe et al 2014). EEG and
audio streams are synchronized via an initial trig-
ger pulse sent along both paths before each experi-
ment. The online processing pipeline, implemented
in OpenVibe (Renard et al 2010), then performs pre-
processing of both EEG and audio streams (figure 3
blue), including multichannel envelope extraction
for the audio signals, and standard filtering and
denoising for the EEG (see section 3 for additional
details).

The core of the attention classification pipeline
is a real-time implementation of a linear decoder
based on canonical correlation analysis (CCA) (see
de Cheveigné et al 2018 for additional details). This
approach generalizes linear regression models to
predict synchronized stimulus-response activity (de
Cheveigné et al 2018, 2021). The appeal of CCA over
previous forward (prediction) and backward (recon-
struction) regression methods is greater accuracy (de
Cheveigné et al 2018).

Based on training data, a CCAmodel is trained to
find linear transforms that are then applied to both
EEG and audio features from each audio stream at test
time (figure 3, yellow). As inputs to the CCA model,
the EEG and audio streams are passed through a

Figure 2. Left: prototype WHISPER module (yellow box)
equipped with four microphones (cyan boxes) and a
wireless synchronizer (red box). Right: a WHISPER module
acquires audio from up to four microphones and exchanges
sampled audio and synchronization signals with other
WHISPER modules or a common laptop. Microphone
streams are merged and processed by a beamformer to
produce clean streams for the decoder and audio rendering
modules.

multichannel filterbank that allows the CCA solution
to implement filters that equalize the spectral content
of both streams, and help factor out irrelevant com-
ponents at multiple time scales. The filterbanks are
identical on the EEG and audio side. On the EEG side,
the CCA solution implements a spatiotemporal fil-
ter to capture different neural sources correlated with
stimulus activity (de Cheveigné et al 2018). On the
audio side, the CCA combines envelope subbands to
performbandpass filtering that capture envelope fluc-
tuations at different time scales (Dau et al 1997).Once
the CCAweightmatrices are learned on training data,
the linear transformation of the data simply consists
of parallel matrix multiplications at test time (one for

4
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Figure 3. Schematic of the real-time attention decoding
pipeline. Each box represents a processing object
implemented in OpenVibe (Renard et al 2010). Inputs are
synchronized EEG and separated audio streams. The
output is a gain control signal for each speech stream. The
processing can be divided into pre-processing
(blue),canonical correlation analysis (CCA) transformation
of EEG and audio (yellow), classification of attention
(green), and audio control (grey).

the EEG data, one for each separated audio channel),
implying low computational cost.

The CCA-transformed EEG and audio streams
are multivariate and produce sets of pairwise correl-
ation coefficients between EEG and audio features.
For each pair, the correlation scores are continu-
ously computed within a predefined decoding win-
dow (figure 3, green). The duration of the decod-
ing window represents a trade-off between decoding
speed and accuracy (Wong et al 2018a, de Cheveigné
et al 2021). In offline studies, we found that our CCA-
pipeline can classify attention with an accuracy of
around 70%–80% with decoding windows around
6–8 s (see figure 7(C) below for an example of off-
line decoding accuracies). The windowed correlation
component scores are passed to a linear classifier, here

implemented as a two-class support vector machine
to decidewhich of two streams is attended. The choice
of classifier is not critical. In the simplest case, the
correlation component scores can simply be summed
and compared between N streams.

2.4. Audio control
The output of the attention classifier is used to con-
trol the gain of the different audio streams in the
speech mixture (figure 3 grey). We have explored dif-
ferent audio control strategies. A simple first choice
was to map time-varying classifier probabilities to
an instantaneous audio gain on each speech stream
via a non-linear mapping function. For this, we
used a point non-linearity that pulls low classifica-
tion probabilities towards zero, and high classifica-
tion probabilities towards a maximum applied gain
(see section 3.7 for details). The rationale is to leave
the gain unchanged (i.e. no BCI feedback) unless the
classifier has reached some level of certainty about the
subject’s attention.

A drawback of a simple instantaneous coupling
between classification scores and gain is the potential
of erratic and fast gain changes. Even if infrequent,
such acoustic artefacts may be perceived as disturb-
ing by the user. As an alternative strategy, we imple-
mented an attention state space model to control the
audio levels (see section 3.8). In this, the rate of gain
change varies with the certainty of the classifier. In
each classification window, the user’s attention state
is a function of the previous state and the current
information transfer rate estimated from the classifier
probabilities. In effect, the state tracker accumulates
information over time to estimate the user’s current
attention state and the relative gains change based on
this state. This makes the system less prone to detri-
mental sudden shifts in gain upon misclassifications
while maintaining the possibility of fast state changes
when the current information transfer rate of the sys-
tem is high.

3. Methods

In this section we provide more details of the imple-
mentation and experimental methods. The busy
reader may wish to skip to section 4 for demonstra-
tions of real-time attention steering.

3.1. EEG acquisition
In the demonstrations shown in section 4 below,
two different EEG acquisition systems were used. For
demonstrations of the real-time platformwithmicro-
phone inputs (section 4.1) we used mBrainTrain’s
mobile 24-channel SMARTING system (mBrain-
Train, Belgrade, Serbia) with a wireless DC ampli-
fier attached to the back of the EEG cap (EasyCap,
Hersching,Germany). For experiment Iwith hearing-
impaired users (section 4.2) and experiment II with

5
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audiovisual stimulation (section 4.3), we used a
64-channel Biosemi ActiveTwo system.

3.2. EEG training data
For all real-time experiments (sections 4.1–4.3), off-
line EEG data for training the system were first
obtained from each subject. Subjects were presented
with two-talker mixtures (audiobooks, one male, one
female) presented dichotically for 30–40 mins. The
training session was split into 50 s long trials and sub-
jects were instructed to attend to one of the two speak-
ers in each trial. The location of the attended tar-
get (attend left vs right) was counterbalanced across
trials to avoid spatial bias. In experiment II with
audiovisual speech, 10 subjects received additional
onscreen visual feedback of the two speakers during
training, while 10 other subjects were only presented
with the audio. Decoders were trained on the audio
envelopes of the speech streams in both cases. In sep-
arate experiments, we noted that listening to a single
speech stream during training data acquisition resul-
ted in similar closed-loop performance. If this obser-
vation can be confirmed, this can simplify the collec-
tion of training data for attention decoding experi-
ments considerably (de Cheveigné et al 2021). The
training data were processed offline with the same
processing pipeline as described for the online system
below.

3.3. Online implementation
The real-time decoder was implemented in Python
assembled as processing blocks (see figure 3) using the
OpenVibe (1.3.0) graphical BCI software platform for
real-time code integration (Renard et al 2010). EEG
and audio signals were broadcasted to an OpenViBE
acquisition server via labstreaminglayer (Kothe et al
2014), a library for networking and routing of time-
series data. To synchronize the data streams, trigger
pulses generated by an Arduino were sent along both
paths (EEG and audio), and a receiver module in
OpenViBEwas then used to quantify and compensate
for any delay between the streams. i.e. to maintain
time-synchronization between data streams.

3.4. Online audio processing
To extract audio envelopes in the online system, each
separate audio stream was squared, low-pass filtered
at 20 Hz (4th order Butterworth), and down-sampled
to 64 Hz via decimation. The envelopes were raised
to the power of 0.3 to account for the compressive
response of the inner ear (Lopez-Poveda et al 2003,
Fuglsang et al 2020). Unlike typical offline studies,
this envelope estimation procedure performs an ini-
tial low-pass filtering and avoids spectral decompos-
ition in the audio domain for computational effi-
ciency. The envelopes were further passed through
a dyadic filterbank implemented as series of low-
pass filters followed by a first order differentiator (de

Cheveigné et al 2018). The low-pass filtering was per-
formed by convolving the signals with square win-
dows of lengths ranging from 1/32 to 1 s in 10 steps on
a logarithmic scale. Differentiation of the low-passed
envelopes act as a high-pass filter, effectively creat-
ing a filter-bank of bandpass filters in the modula-
tion domain. The audio envelopes were then delayed
to account for the difference between stimulus and
response by applying a constant shift estimated from
the training data. Next, the data were transformed
using principal component analysis (PCA) to reduce
dimensionality. The number of PCA components
retained was determined by cross-validation on the
training data, and the PCA transform of the result-
ing dimensionality was then applied in the online
processing. Finally, the multichannel envelopes were
multiplied by the CCAweights obtained on the train-
ing data.

3.5. Online EEG processing
The EEG data were low-pass filtered at 20 Hz (4th
order Butterworth) and down-sampled to 64 Hz to
match the audio sampling rate. A high-pass filter at
0.1 Hz (2nd order Butterworth) was used to filter out
low-frequency drifts, and a common average refer-
ence was applied. The data were further filtered to
reduce eye-blink activity using a spatial filter obtained
using the electroocular channels in the training data
(Wong et al 2018a). The EEG were passed through
a multichannel filtering operation identical to the
one applied to the audio envelopes. The data were
truncated using PCA, similarly as for the audio data.
Finally, the data were transformed using the CCA
weights obtained on the training data.

3.6. Online audio-EEG classification
The temporally aligned CCA-transformed EEG and
audio envelopes were concatenated and the correl-
ation between corresponding CC pairs were com-
puted within a continuously updated decoding win-
dow. Decoding windows of 8 s were used in experi-
ment I and windows of 6.5 s were used in experiment
II. In both cases, classifications where performed at
a rate of 4 Hz, e.g. with a stride of 0.25 s, resulting
in an decoding windows with an overlap of 7.75 and
6.25 s, respectively. Each correlation coefficient pair
was z-scored based on the training data and input to
a linear support vector machine (SVM) classifier with
weights obtained on the training data. The classific-
ation output was converted to class probabilities for
each speech streambeing attended based on the train-
ing data (Platt et al 1999).

3.7. Audio gain control
The probability outputs of the classifier was used to
control the gain balance between speech streams by
attenuating ignored streams in the acoustic feedback
to the listener. The baseline level of the speech mix-
ture (without BCI feedback) was set to 60 dB HL,
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Figure 4. Simulations illustrating the behavior of the
different audio gain control strategies. Top row: simulated
attention classification probabilities Pt. Middle row:
outputs of the state tracker St for different values of the
parameter K in equation (2), i.e. different durations of the
decoding window (in secs). Bottom row: outputs of the
instantaneous gain control function Gt for different values
of the shape parameter k. Three different simulations are
considered here. The first simulation (left column) assumes
an ideal scenario where the classifier correctly identifies an
attention switch after 50 s. In the second simulation (middle
column) classification probabilities fluctuates sinusoidally.
The third simulation (right column) again assumes a target
attention switch at 50 s but the classification is noisy. As can
be seen, noisy classification results in a fluctuating gain for
the instantaneous Weibull mapping function Gt (bottom)
but a smooth gain control for the state tracker (middle).

and BCI feedback could result in a maximum gain
difference between speakers of 10 dB. For hearing-
impaired listeners, the baseline level was amplified
based on their audiometric thresholds to compensate
to reduced audibility.

Different gain control functions were investig-
ated. In experiment I, classification probabilities were
mapped to a time-varying gain control signalGt using
a non-linearity corresponding to a modified Weibull
cumulative distribution function:

Gt =

1− e−(
2Pt−1

λ )
k

for Pt ⩾ 0.5

e−(
1−2Pt

λ )
k

− 1 for Pt < 0.5
(1)

where Pt is the time-varying probability outputs
of the classifier. In the current two-talker scenario,
speaker A is classified as attended when Pt > 0.5 and
speaker B is classified as attended when Pt < 0.5 (and
Pt = 0.5 indicates the chance-level likelihood). The
parameters k and λ determines the shape and gain
of the Weibull non-linearity (see figure 4). The gain
control signalGt was scaled to the real-valued interval

[−1,1] (dividing by 1− e(1/λ)
k
). Gt =−1 then indic-

ates that full gain should be applied to speaker Awhile
speaker B should be attenuated by the maximum
gain difference. Gt = 1 indicates full gain applied to
speaker B while speaker A is attenuated. 0 indicates
that the system should not attenuate either speaker.
The positive and negative values of the gain control
signal were each mapped to dB and used to control
the audio levels of the two speech streams.

3.8. State tracker
In experiment II, the relative gains were controlled
via a state tracker. The state tracker implemented a
strategy to control the gain based on the state of the
attention decoding system. The likelihood probabil-
ity of the classifier Pt now controls the rate of change
in gain. This allows the state to remain stable when
the attention classifier yields a chance-level likelihood
(i.e. likelihoods toward 0.5),making less prone to det-
rimental sudden shifts in gain.

The state at time step t is computed as:

St = St−1 +C
2

K · Fs
ITRt − sign(St−1) |St−1|α (2)

where C is the attention state corresponding to the
classified speaker:

C=

{
1 for Pt ⩾ 0.5

−1 for Pt < 0.5
(3)

with Pt again being the classifier likelihood. ITRt

is the estimated information transfer rate (Wolpaw
et al 1998) in bits per classification window of length
K seconds and Fs is the number of classifications
per second, here set to 4 Hz. Using ITR allows
the system to adapt its switching speed to the cur-
rent information rate. In essence, in absence of the
sign(St−1) |St−1|α term, 2

K·Fs ITR allows the state to
switch from −1 to 1 (or vice versa) in one second if
the information transfer rate is equivalent to 1 bit/s
throughout the entire second. The information trans-
fer rate (in bits per classification window) is com-
puted as:

ITRt = log2 (N)+ Pt log2 (Pt)

+ (1− Pt) log2

(
1− Pt
N− 1

)
(4)

where N is the number of classes (2 in this case). The
exponent α in equation (2) acts as a hyperparameter
that controls the amplitude of state changes and was
fixed heuristically at 7.5 in experiment II.

Figure 4 shows simulations that illustrate the
behavior of the two different gain control strategies.
The top row shows simulated classification prob-
abilities Pt in three different scenarios (columns).
The resulting outputs of the state tracker St and the
instantaneous gain function Gt are shown below in
the middle and bottom rows, respectively. The first
(leftmost) column simulates an optimally classified
instantaneous switch of attention half-way through
the trial. The instantaneous gain function (bottom
row) shifts the gain accordingly whereas the state
tracker (middle row) introduces a delay proportional
to the duration of the decoding window. The middle
column illustrates how each gain function maps clas-
sification probabilities, here simulated as varying
sinusoidally. For higher values of k, the non-linear
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mapping in the instantaneous gain function (bot-
tom row) will force the gain to remain unchanged for
low classification probabilities and apply maximum
gain difference once a certain classification level is
reached. The parameter k controls this non-linearity
and its setting allows a trade-off between avoiding
gain changes for low probabilities and the overall
smoothness of the gain changes. The parameter k
mainly affects the perceptual quality of the gain track
and was set heuristically (k= 2) in experiment I.

A main motivation for a state space approach to
gain control can be illustrated with less-than-optimal
classification. A noisy classification of an ideal switch
(black) is simulated in the rightmost column in
figure 4. In this case, an instantaneous gain control
(bottom row) produces a fluctuating gain, whereas
the state tracker (middle row) is less prone to these
variations. The duration of the decoding window can
be increased to make the state tracker less prone to
misclassifications but at the expense of slower change
in gain upon actual switches in attention. Moreover,
the state space model adapts switching time based on
the input ITR, i.e. the system can react faster when
the current attention classification accuracy is higher.
Since the noisy and variable classification scenario is
closer to reality for classification based on short EEG
segments, we find that a state space approach to gain
control like this is generally preferable. In experiment
II using the state tracker, we fixed the decoding win-
dow to 6.5 s to represent a trade-off between switching
speed and random gain fluctuations. The duration of
the decoding window could be automatically optim-
ized for performance on training data, but this can
result in very long duration windows for poor sub-
jects, effectively making the BCI unresponsive.

3.9. Participants
In experiment I with hearing-impaired listeners
(section 4.2), 3 young normal-hearing and 3 older
hearing-impaired listeners participated. The hearing-
impaired subjects participated without their hearing
aids on. Instead, a linear frequency-specific amp-
lification was applied based on their audiometric
thresholds to restore baseline audibility. In exper-
iment II with audiovisual speech (section 4.3),
20 young normal-hearing listeners participated.
Experiments were conducted in accordance with pro-
tocol H-16.036.391 approved by the Science Ethics
Committee for the Capital region of Denmark.

3.10. Closed-loop test procedures
In test sessions with the real-time system, 24 trials (16
closed-loop, 8 open-loop) of 90 s were collected per
participant in experiment I (section 4.2), and 36 tri-
als (24 closed-loop, 12 open-loop) of 50 s were collec-
ted in experiment II (section 4.3). Pre-recorded two-
talker speech audio streams (one male, one female)
were fed directly to the real-time decoder in these
experiments. Subjects were prompted to attend to one

speaker via on on-screen arrow at the beginning of the
trial, and to switch attention to the other speaker half-
way through the trial.

3.11. Code
A software implementation of the real-time sys-
tem, including code for the real-time decoding
pipeline is available at https://gitlab.com/cocoha/
cocoha-matlab-toolbox.

4. Demonstrations

In this section, we report different real-time experi-
ments performed to demonstrate that the system is
functional and usable by a real subject. The demon-
strations serve as proof-of-principle use-cases rather
than quantitative evaluations of the BCI. First, we
show a video demonstration illustrating the system
with the WHISPER microphone platform separating
speech in a real-world acoustic scenario (section 4.1).
Next, we show two experiments to demonstrate
attention-steering across subjects with or without
hearing impairment (experiment I, section 4.2), and
with and without visual input of the speakers face
(experiment II, section 4.3). In these experiments,
rather than using the microphone platform, we used
pre-recorded speech (audiobooks) so that the same
speech material could be presented and results com-
pared across different subjects. The real-time system
was then used to control the audio gain of the two
speech streams.

4.1. Demonstration with real talkers
A video illustrating the real-time system is shown
below (figure 5). A listener wearing a wireless EEG
system focuses attention on either the male or female
speaker. The two speakers alternately raise their hands
to indicate that the listener should attend to her or
him. The WHISPER microphone platform is placed
on the table between the talkers and the listener in an
ad hoc arrangement. Themicrophone signals are syn-
chronized on the platform and streamed to the speech
separation module that performs online beamform-
ing. The separated speech streams are transmitted to
the attention decoding module running on a remote
laptop. The decoding module receives and synchron-
izes EEG and audio streams and performs CCA-based
decoding of attention, as described above. The clas-
sification output controls the relative gain of the
two speech streams in the acoustic feedback presen-
ted to the headphones of the subject. The audio
track of the left video contains the recorded room
audio (the mixed speech). The audio track of the
right video contains the beamformed audio presen-
ted to the subject, i.e. emulating the hearing aid
output. More video demonstrations are available at
cocoha.org/2018/12/31/videos/.
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Figure 5. Video demonstration of real-time attention decoding. Left: the mixed speech audio recorded in the room. Right: the
separated speech audio received by the subject. The subject (facing away from the camera) is wearing a wireless EEG system and
headphones receiving the acoustic feedback from the BCI. The two speakers raise their hand alternately to indicate that the
listener should attend to them. The WHISPER microphone platform is placed on the table between the listener and the speakers.
The videos are available in the online article.

4.2. Experiment I: demonstration with normal-
hearing and hearing-impaired listeners
We first tested the real-time system with the clinical
target group: older listenerswith hearing impairment.
Hearing-impaired (HI) listeners with moderate-to-
severe hearing loss and normal-hearing (NH) listen-
ers were presented with two competing speech
streams in an attention-switching paradigm. To be
able to compare results across listeners, pre-recorded
speech streams (onemale, one female)were presented
via loudspeakers to the left and right of the subject.
Training datawere first obtainedwith subjects attend-
ing one of the two simultaneous speakers on separate
50 s long trials for ∼30 min (as in offline studies).
After training the attention decoder, subjects per-
formed closed-loop steering on 16 test trials, each 90
sec-long. 8 open-loop test trials (without neurofeed-
back) were collected for comparison. Subjects were
prompted to attend to one speaker at the beginning of
the trial and to switch attention to the other speaker
after 45 s. Online classification was performed in
decoding windows of 8 s at a rate of 4 Hz. The classi-
fication probabilities was then mapped to an instant-
aneous gain controlling the balance between the two
recorded audio streams (see section 3.7). Maximum
classification probability resulted in a maximum gain
difference of 10 dB between the two speech streams.

Data from these real-time experiments are shown
in figure 6. The average gain applied to the two
speech streams as a result of real-time decoding are
shown in figure 6(C) and were similar for the HI
(blue) and NH (red) listeners. At the onset of trials,
the two speakers are presented at the same baseline
level (0 dB target-to-masker ratio, TMR). As expected
fromoffline decoding results, the system can correctly
classify the attended speaker and the acoustic gain
changes accordingly at the onset of the trial. When
cued to shift attention, the subject attends to the other
speaker. At that point, the target speaker has a neg-
ative target-to-masker ratio, here the maximum gain
difference of−10 dBTMR (supposing that the system

classified the speaker correctly on the first half of the
trial). As can be seen, the gain successfully switches
to enhance speaker 2. The average switch time, com-
puted as the duration from the switch cue to the zero-
crossing point in the classifier output, was found to be
4.7 s (min= 2.9 s, max= 6.3 s).

4.3. Experiment II: real-time experiment with
audiovisual speech
Auditory attention can be decoded while listeners
only hear the speaker they are attending, but listen-
ers typically look at the speaker they are listening to
in real-world situations. It is unclear whether a BCI
trained only on auditory inputs might also work suc-
cessfully in natural audiovisual conditions. The sys-
tem could potentially fail to generalize to this mis-
matching stimulus condition. Alternatively, the visual
face may be correlated with audio envelope inform-
ation (O’Sullivan et al 2017a, Pedersen et al 2022),
and it may be easier to focus auditory attention on a
speaker that can be seen, which may in turn improve
decoding (O’Sullivan et al 2013). Potential visual
benefits are important to investigate, for instance
in the case were the user wants to switch attention
to a previously ignored speaker. In this case, visual
information correlated with the speech signal may
help ‘recover’ a target with low audibility.

We tested these questions in a larger experiment.
Training data were obtained from normal-hearing
participants (N = 20) listening to two-talker speech
mixtures with or without watching the visual input
of the speakers’ moving faces (figure 7). The stim-
uli consisted of two separate pre-recorded speech
videos, i.e. the microphone platform was not used
in this experiment. During training trials, half of
the participants (N = 10) received audiovisual stim-
uli, while the other half (N = 10) only received the
speech audio. All listeners were then tested using the
closed-loop system either with audiovisual stimuli
or with the speech audio alone. As a control condi-
tion, we included trials without BCI control, i.e. trials
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Figure 6. Real-time attention steering of acoustic feedback
in hearing-impaired (HI) and normal-hearing (NH)
listeners. (A) Paradigm: subjects were presented with two
simultaneous speech streams and cued to switch attention
to speaker 2 after listening to speaker 1 for 45 s. (B) Outputs
of the attention classifier as a function of time. The line
indicates the point of the attention switch. (C) Applied gain
(in dB) to speaker 1 and speaker 2 as a function of time.
Red traces indicate NH listeners, blue traces indicate HI
listeners. The panel on the right summarizes the average
gain applied across trials 0–35 s before and 10–35 s after the
attention switch, i.e. omitting the 10 s following the switch.

where the audio gainswere left unchanged, referred to
as ‘open-loop’ trials. All participants were presented
with audiovisual stimuli in the open-loop trials. In
test trials of 50 s, subjects were prompted to follow
one speaker and then cued to switch attention mid-
way through the trial (i.e. after 25 s), as in experiment
I. Rather than the instantaneous gain control function
used in experiment I, the audio gains were controlled
by a state tracker with a sliding decoding window of
6.5 s and a classification rate of 4 Hz. The rationale
of the state tracker is to make the gain less prone to
erratic changes in gain with noisy classification out-
puts (see section 3.7 for a comparison between gain
control strategies). The same speech envelope decod-
ing pipeline as described abovewas used in both audi-
ovisual and audio-only conditions (i.e. no visual fea-
tures were used in the decoder).

Figure 7 shows data from the real-time experi-
ments with audiovisual speech. Figure 7(B) shows the
output of the attention state tracker in the different
BCI conditions (closed-loop audio-only, closed-loop
audiovisual, open-loop) for the participants trained
with audio-only speech (above) and the participants
trained with audiovisual speech stimuli (below).
Participants were similarly able to steer the BCI with
and without seeing the speakers face (CLA vs CLAV),

and with and without having seen the speakers face
during training. The average switching time of state
tracker, again computed as the duration from the
switch cue to the zero-crossing point, was found to
be 12.6 s, with no difference found between BCI con-
ditions. This slower switching time compared to the
ones observed experiment I (section 4.2) indicates
that more stable gain variations with the state tracker
comes at the expense of a slower reactivity of the
BCI. Figure 7(C) shows the attention decoding accur-
acy obtained with the offline training for participants
listening to audio-only speech (blue) and for parti-
cipants presented with audiovisual speech (red). A
modest improvement with visual feedback was seen
in the offline training data, but this did not appear to
translate to the real-time performance. As a summary
measure of BCI tracking performance, figure 7(D)
shows the average accuracy of the differential output
of the state tracker, i.e. whether the state tracker steps
in direction of the target speaker in each classification
window.No differences between closed-loop vs open-
loop steering were observed, indicating that subjects
can switch attention and ‘recover’ an attenuated (pre-
viously ignored) speaker. We also did not observe
interactions between training modality (audio-only
vs audiovisual) and closed-loop modality. It might be
expected that participants presented with audiovisual
speech during training (red) performed better in the
matched audiovisual closed-loop condition, and vice
versa for the audio-only group (blue), but this was
not observed. While the real-system accurately tracks
attention for most subjects, outlier subjects perform-
ing at chance-level can be observed (figure 7(D)).

5. Discussion

Helping hearing-impaired listeners follow speech in
noisy everyday environments remains a fundamental
challenge for hearing technologies. In this paper, we
provide an overview of a real-time system for acoustic
speech separation controlled by attention. As proof-
of-principle, we describe initial closed-loop demon-
strations indicating that listeners, including elderly
people with hearing loss, can steer a gain to enhance
the speech sources they are focusing their attention
on. If the SNR of speech sources can be directly con-
trolled and improved in this way, a gain in speech
understanding follows inherently. Yet, these results
should be interpreted with caution. Numerous chal-
lenges in bringing such technology to real-life use
obviously remain. In the following, we discuss some
of the critical prospects and limitations.

5.1. Using attention for seamless BCI control
Using attention to steer acoustic feedback has inher-
ent benefits in the context of neural prosthetics. BCIs
often require the user to direct attention to the BCI
device itself (e.g. as in a ‘P3-speller’ where the subject
actively focuses on onscreen letters to spell words).
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Figure 7. Experiment II: real-time attention decoding with and without visual input. (A) Listeners were cued to attend a male or
female speaker in audiovisual or audio-only conditions. (B) Real-time outputs of the attention state tracker for listeners trained
with audio-only stimuli (above) or listeners trained with audiovisual stimuli (below). Line colors indicate the different BCI
stimulus conditions. Blue: closed-loop audio-only (CLA), red: closed-loop audiovisual (CLAV), green: open-loop. The shaded
areas indicate standard errors of the mean. (C) Offline average attention decoding accuracies based on analysis of the training
data in segments of 6.5 s for listeners trained with audio-only stimuli (blue) or listeners trained with audiovisual stimuli (red).
(D) Online accuracies of the attention state tracker for listeners trained with audio-only stimuli (blue) or listeners trained with
audiovisual stimuli (red).

The attention-controlled hearing instrument, on the
other hand, decodes and ‘amplifies’ a natural listening
process. Listeners naturally orient attention towards
relevant sources in real-world listening situations,
allowing them to better perceive relevant sources and
suppress background noise. Our BCI assists this nat-
ural behavior without interrupting it. If the system
correctly decodes attention, then the interaction is
seamless. An alternative solution might be to have
the user control the speech separation system via an
overt device (e.g. selecting which talkers to enhance
on a mobile phone). However, such a solution has
the detrimental effect that it diverts the user’s atten-
tion towards steering the device rather than facilitat-
ing it. With the proposed BCI, listeners simply attend
to speech as they do in everyday situations to better
perceive the relevant source.

5.2. BCI based on stimulus-response correlation
A real-time auditory attention decoding system based
on stimulus-response correlation is unique in a BCI
context. Most existing BCI systems classify brain sig-
nals to generate some form of system command (e.g.

steering some application), i.e. the neural data are
the only input to the BCI. The BCI discussed here,
on the other hand, takes both EEG and audio sig-
nals as inputs. Classification now relies on attention-
related changes in the relation between speech stimu-
lus features and the EEG response. This imposes an
important constraint on the classification problem:
the BCI can act specifically on the part of the neural
response that is related to the stimulus and not on
global changes in brain states. This may make the
BCI less susceptible to random EEG noise or task-
unrelated neural signals.

An alternative solution is to classify a listener’s
spatial attention based on changes in EEG alpha
power (Kelly et al 2005, Geirnaert et al 2020, Popov
et al 2023), i.e. classifying spatial attention based
only on EEG features. Yet, this solution suffers from
the inherent problem that changes in lateralised
EEG alpha power coincide with many task-unrelated
changes in the cognitive state of the subject. In pilot
studies using this approach, we found that high
attention classification accuracies (>90%) could be
achieved with short EEG segments (<1 s), but the
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system failed to work robustly in closed-loop. A BCI
based on stimulus-responsemetricsmay help the crit-
ical generalization to real-world conditions beyond
those used for training the system.

Other work has investigated neurofeedback
based on auditory attention decoding with stimulus-
response models. Zink et al (2016) provided subjects
with visual feedback of online decoding accuracy
scores. In a system similar to ours, Aroudi et al (2021)
used stimulus-response-based attention decoding to
steer the relative gain of two speech audio signals.
Consistent with our observations reported above,
closed-loop decoding accuracy was found to be on
par with open-loop decoding (without neurofeed-
back). This is encouraging, given that closed-loop
gain reduction of the ignored speaker could make
attention switching more difficult.

Our experiments indicate that it is possible to
‘recover’ previously ignored sources attenuated by up
to 10 dB relative to the previous target source, but the
boundary conditions for this remain to be explored
(Das et al 2018). If the stimulus-response relation is
not detectable (at very low SNRs), then the BCI can-
not classify attention. This may represent a potential
weakness of decoding with stimulus-response mod-
els. However, offline experiments with audiovisual
speech tracking indicate that ‘envelope’ speech track-
ing may be possible in silent lipreading conditions
where the speaker can only be seen (O’Sullivan et al
2017a). Visual feedback of the speaker may thus help
a BCI track a speech source even when it cannot be
heard.

5.3. What is accurate decoding?
Attention classification implies a trade-off between
speed and accuracy. A critical limitation of the tech-
nology is a very low tolerance for misclassification.
In our experiments with hearing-impaired listeners
(section 4.2), subjective reports from participants
indicated that misclassifications were experienced as
highly disturbing. With decoding windows below 10
s, the accuracy is currently below 100% correct clas-
sification for most subjects. This implies that the sys-
tem occasionally amplifies the unattended source and
suppresses the attended target, which is the oppos-
ite of the intended effect. Even if misclassification
occurs infrequently (e.g. 10% of time time), the
effect may be disastrous. While the BCI is seam-
less when classification is correct (the subject simply
listens to speech), incorrect classification immediately
makes the listener aware of the presence of the BCI.
In our experiments, some test participants reported
that this meant switching strategy to actively steer-
ing the device, a process reported as effortful, i.e. the
opposite effect of the intended purpose of the BCI.
However, in our real-time experiments, such subject-
ive reports were not collected in a systematic man-
ner. Interestingly, Aroudi et al (2021) reported sub-
jective ratings of perceived effort but found no effect

of closed-loop steering. Yet, it is not a priori clear
how decoding accuracy should translate to the sub-
jective perception of BCI control or perceived effort,
and examining subjective reports systematically will
be important for future closed-loop studies.

As noted in the reported experiments, between-
subject variability in real-time decoding accur-
acy is considerable. Although average perform-
ance was relatively high, some participants showed
real-time tracking accuracy well below chance level
(figure 7(D)). This implies that the BCI effectively
works against these subjects (amplifying the speech
stream to-be-ignored). The reasons for this behavior
are difficult to elucidate. It is possible that some par-
ticipants become aware of the feedback control and
focus on suppressing the speaker to be ignored. It
is also possible that occasional amplification of the
ignored speaker may cause to the ignored speech to
grab the subject’s attention, effectively causing the
BCI to get stuck in the wrong state. Identifying such
sources of failure in individual users will be critical to
the success of such closed-loop technologies.

In the reported experiments, we focus on show-
ing the gain change after the instructed attention
switch, but this is arguably a limited metric to cap-
ture BCI system performance. A multitude of system
design choices can influence BCI performance inways
that are difficult to predict. For instance, different
decoding methods or gain control strategies define
the ‘reactivity’ of the BCI, which may in turn influ-
ence subjects’ attention, influencing decoding per-
formance, etc in a complex loop of events. Non-linear
neuro-behavioral feedback systems like this requires
dedicated tools of analysis and experimental setups
that is beyond the scope of this study.

It is unclear how closed-loop attention steering
can best be evaluated inmore natural situations while
preserving proper experimental control. For simpli-
city, and for experimental control, we limit ourselves
to simple two-talker setup with access to clean audio
sources. The same two-talker setup is used to gener-
ate data for model training and for closed-loop test-
ing, and it is not clear how performance generalizes
beyond this artificial situation, e.g. to different acous-
tic conditions, different SNRs, different number of
speakers, etc.

5.4. Better attention decoding?
Improving decoding accuracy may be criticial for
progress towards a successful technology. Our cur-
rent implementation relies on linear mappings CCA
between audio and EEG features. Non-linear exten-
sions have been proposed in offline attention decod-
ing studies (de Taillez et al 2020). An obvious
extension is to consider deep learning-based mod-
els (Ciccarelli et al 2019, Vandecappelle et al 2021,
Thornton et al 2022). However, a number of pitfalls,
often deceitfully hidden, should be pointed out. One
concern is the limited availability of large amounts of
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unbiased training data. In typical attention decoding
experiments, listeners are instructed to attend to one
speaker in one ear and ignore a different speaker in
the other ear. Linearmethods based on envelope-EEG
correlation can generalize to new speakers because
they explicitly model this correlation. However, a
non-linear neural network trained to classify atten-
tion may simply ignore the EEG and classify acous-
tic differences between the speakers. To avoid this,
experiments that generate training data should be
carefully counterbalanced, e.g. attending equally to
both speakers, equally attending left/right, etc. Even
here, subtle differencesmay leak into the training data
(Rosenblatt et al 2024). For instance, speakers may
slightly shift voice pitch when speaking over longer
durations, and conventional cross-validation proced-
ures (such as leave-one-trial-out) are prone to bias
from such details.

5.5. What is ground-truth for attention decoding?
Another critical challenge for obtaining high decod-
ing accuracy is the lack of ground truth measures of
attention. Decoding models, such as the ones presen-
ted here, are trained on data obtained with listeners
cued to attend to a given target during training tri-
als. The subjects’ attention state is assumed to remain
stationary throughout a trial, but the attention state
cannot be monitored in any clear way. In everyday
tasks, it is difficult to maintain focused attention
over time, and attention fluctuates with the internal
state of the listener. Attention can also fluctuate with
external salient events that occasionally grab atten-
tion (Esterman et al 2013). When instructed to focus
on a speech target in attention decoding experiments,
a listener’s attention may still occasionally switch to
the non-target, or attention may simply drift from
the task altogether (Weissman et al 2006, Smallwood
and Schooler 2015). The lack of measures of such
attention dynamics puts decoding models on uncer-
tain ground. An alternative approach may be to dis-
pose of attention labels and focus instead on model-
ling the stimulus-response relationwith simpler stim-
uli, e.g. listening to a single speaker. For instance, de
Cheveigné et al (2021) proposed training stimulus-
response models based on whether or not a segment
of EEG matches the auditory stimulus that evoked
it. This approach allows models to be trained in a
self-supervised manner. If attention modulates the
stimulus-response mapping, then robust stimulus-
response models may be key to progress without rely-
ing on attention labels.

5.6. Need for speed?
Improved decoding accuracies can be obtained by
integrating the classification over longer durations,
i.e. by sacrificing classification speed. In our experi-
ments, we explored different gain control strategies.
Instantaneous gain (used in experiment I) allowed
faster average gain changes with attention switches

(<10 s), at the expense of erratic gain changes.
Temporal integration with a state space model (in
experiment II) stabilized gain fluctuations, but at the
expense of slower mean switching times (>10 secs).
Similar long switch delays were reported by Aroudi
et al (2021). In dynamic communication situations
involving many talkers, attention may switch rapidly
and decoding windows of several seconds are already
unfeasible. However, in other situations, longer time
constants may be acceptable. In many communica-
tion situations, the communication partners remain
the same over longer periods—e.g. in a restaurant or
at a meeting—where the BCI can slowly ‘zoom in’
on relevant sources. An alternative decoding strategy
may be to identify such long-term stable communic-
ation contexts.

5.7. Alternative EEG solutions
A critical limitation of the technology is the qual-
ity of EEG signals recorded during natural beha-
vior. Cortical signals recorded with scalp EEG are
inherently weak and noisy. Our current demonstra-
tions of a real-time BCI are still limited to station-
ary setups where the listener is sitting still and pass-
ively listening. Motion artifacts during natural beha-
vior tend to dramatically surpass the brain signals
of interest in scalp EEG. Ear-EEG (EEG recorded in
the ear canal or behind the ear) offers feasible solu-
tions for integration with a hearing aid (Looney et al
2012, Bleichner and Debener 2017), but does not
appear to improve decoding performance (Fiedler
et al 2017). Invasive cortical recordings improve brain
signal SNR considerably, and O’Sullivan et al (2017b)
demonstrated fast and accurate decoding using elec-
trocorticography (ECoG) recordings in neurological
patients (O’Sullivan et al 2017b). New multichannel
implant solutions are emerging for BCI perspectives
(Steinmetz et al 2021). Less invasive solutions such
as subcutaneous EEG are currently in clinical devel-
opment (Viana et al 2021) and offer interesting per-
spectives for decoding attention. However, weighing
the potential benefits of invasive solutions against the
risks for the individual patient is naturally a complex
ethical discussion.

5.8. Acoustic speech separation solutions
Using a separate speech separation front-end based
on distributed microphones was a design choice in
our system. Distributed sensors on dedicated hard-
ware offer high-quality speech separation at very low
latencies, which is paramount for hearing instrument
applications. One drawback of stationary micro-
phones is the need for calibration for a given spa-
tial configuration of sound sources. However, Voice
Activity Detectors could be used for dynamic calib-
ration in non-stationary environments. More flex-
ible extensions have recently been proposed, such as
‘acoustic swarms’ of self-distributing microphones
that dynamically locate and separate speech sources
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in changing environments (Itani et al 2023). Other
challenges arise with synchronization of wireless
nodes based on radio transmission, which is gener-
ally poorly suited for outdoor environments or rooms
with plentiful reflective materials like metal surfaces.

An obvious drawback is the need for distributed
microphones in the listening space. However, solu-
tions with user-worn microphones (placed on the
hearing aid) are also conceivable. Single-channel or
two-channel solutionsmay exploit advances in speech
separation within deep learning (Luo and Mesgarani
2018). O’Sullivan et al (2017b) already demonstrated
that attention can be reliably decoded from the out-
puts of a single-channel speech separation system,
i.e. without assuming access to the clean speech
sources (O’Sullivan et al 2017b). Successful attention
decoding does not follow automatically from previ-
ous results with ‘clean sources’ since some degree
of cross-talk between the separated streams must be
expected even with high-performing speech separa-
tion systems (Ravanelli et al 2021, Subakan et al 2021).

In our system, the speech separation front-end
is separate from the attention decoding process. The
task of the decoder is then to decide which of N sep-
arated streams the listener is attending. An alternative
framework is to combine the speech separation and
decoding steps into one process (Ceolini et al 2020a).
Since a stimulus-response decoder estimates speech
features (typically amplitude envelopes) of the atten-
ded stream, these can be used as a ‘hint’ of the clean
audio source. Ceolini et al (2020a) presented a neural
network-based speech separation system trained on
the neural data to extract the clean audio signal dir-
ectly from the speech mixture. Using ECOG or EEG-
reconstructed speech envelopes, the system directly
separates the target from the mixture input. Higher
envelope reconstruction accuracies were shown to
translate into higher separation quality (e.g. an EEG-
based reconstruction accuracy of 0.35 corresponds to
around 4.2 dB SDR as reported inCeolini et al 2020a).
This integrated approach could potentially be expan-
ded to end-to-end neural networks that perform
speech separation directly from the raw audio mix-
ture and the continuous EEG (Hosseini et al 2021).
An advantage of such an approach is that the speech
separation systemdoes not have to separate all sources
in an acoustic scene (and compare the brain response
to each acoustic source) but can focus on separating
only the relevant target source from themixture. This
may offer a considerable computational advantage in
complex acoustic scenarios with many sources.

5.9. Audio control strategy
In our closed-loop experiments, we use the BCI
to apply audio gain to the attended and ignored
speakers. Successful development of the technology
is likely to require development of refined techniques
to render the acoustic feedback in ways that are
intuitive and comfortable for the user. Re-rendering

the acoustic scene with spatially distributed sources
may be critical for real-life usability. It should also
be noted that amplification is not the only possible
audio control strategy. Hearing aids can, for instance,
benefit greatly from selectively applying different
dynamic-range compression to the target and back-
ground signals (Overby et al 2023). Selectively apply-
ing fast-acting compression to the attended fore-
ground signal and slow compression to the ignored
background avoids the problem of amplifying noise
components along with the target speech, a recurrent
issue faced by hearing aids today (May et al 2020).

5.10. Attention training
The BCI is presented here as an assistive techno-
logy for the hearing impaired, but other uses can
be envisioned. Closed-loop neurofeedback training
of attention has been considered as a tool to treat
attention deficit disorders, helping patients sustain
focus over longer periods (Monastra et al 2006, Arns
et al 2009, Belo et al 2021). Closed-loop imaging
designs have been proposed in which people mon-
itor their own attention via specially designed visual
stimuli that change with attention-driven neurofeed-
back (Debettencourt et al 2015). Our closed-loop sys-
tem decodes attention during natural listening and
modifies the attended speech stimulus itself. This has
the advantage of engaging a natural attention pro-
cess where the ‘reward’ of successfully attending is
inherent in natural behavior (listening becomes easier
when attending). Task difficulty can easily be titrated
(e.g. via the amount of gain applied) making the sys-
tem usable in attention training programs. Closed-
loop training may also be relevant in context of the
proposed hearing technology. It is possible that hear-
ing impaired users may learn to adapt to the closed-
loop gain control system, and individual training pro-
grams that gradually adjust SNR to improve decoding
accuracy over time could be explored.

5.11. Looking forward
Going back to the motivations laid out in the
Introduction, it is clear that we are now closer to our
goal, and yet we remain far from a usable product:
the glass is half full, and yet half empty. We success-
fully assembled and tested a real-time device that cov-
ers the full chain from sound waves and brain sig-
nals to attention-based selective stimulation at the
ear. However, the demonstration remains sketchy at
many points. We advanced the state of the art of
auditory attention decoding, but latency and accur-
acy remain below levels required for comfortable use.
Progress here may come from better algorithms, bet-
ter brain signal cues, better understanding of the
intentional processes that guide selective auditory
attention, or novel brain signal measurement tech-
niques. We designed and assembled a modular dis-
tributed microphone array solution to address the
problem of delivering high-quality sound to the user.
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However, this is just one of a wide range of pos-
sible solutions, and latency of wireless communic-
ation remained a problem. Further progress in this
part of the design space depends crucially on low-
latency protocols for wireless communication, and
much work remains to evaluate this approach relat-
ive to others. Our experiments with human subjects,
including typical potential users, indicate that the
concept is workable but limited by current perform-
ance levels. These experiments also point to the need
of a more complete methodology for future studies.
Overall, these outcomes demonstrate that the goal is
worth pursuing, and the software thatwe providemay
help future endeavors in that direction. This work
should be seen as an early milestone along the road
towards a cognitively controlled hearing aid.
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tem is available at https://gitlab.com/cocoha/cocoha-
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