
920 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 14, NO. 3, MAY 2006

Discrimination of Speech From Nonspeech Based on
Multiscale Spectro-Temporal Modulations

Nima Mesgarani, Student Member, IEEE, Malcolm Slaney, Senior Member, IEEE, and
Shihab A. Shamma, Senior Member, IEEE

Abstract—We describe a content-based audio classification
algorithm based on novel multiscale spectro-temporal modulation
features inspired by a model of auditory cortical processing. The
task explored is to discriminate speech from nonspeech consisting
of animal vocalizations, music, and environmental sounds. Al-
though this is a relatively easy task for humans, it is still difficult to
automate well, especially in noisy and reverberant environments.
The auditory model captures basic processes occurring from the
early cochlear stages to the central cortical areas. The model
generates a multidimensional spectro-temporal representation of
the sound, which is then analyzed by a multilinear dimensionality
reduction technique and classified by a support vector machine
(SVM). Generalization of the system to signals in high level of
additive noise and reverberation is evaluated and compared to two
existing approaches (Scheirer and Slaney, 2002 and Kingsbury et
al., 2002). The results demonstrate the advantages of the auditory
model over the other two systems, especially at low signal-to-noise
ratios (SNRs) and high reverberation.

Index Terms—Audio classification and segmentation, auditory
model, speech discrimination.

I. INTRODUCTION

AUDIO segmentation and classification have important ap-
plications in audio data retrieval, archive management,

modern human-computer interfaces, and in entertainment and
security tasks. In speech recognition systems designed for real
world conditions, a robust discrimination of speech from other
sounds is a crucial step. Speech discrimination can also be used
for coding or telecommunication applications where nonspeech
sounds are not of interest, and, hence, bandwidth is saved by
not transmitting them or by assigning them a low resolution
code. Finally, as the amount of available audio data increases,
manual segmentation of audio sounds has become more difficult
and impractical and alternative automated procedures are much
needed.

Speech is a sequence of consonants and vowels, nonharmonic
and harmonic sounds, and natural silences between words and
phonemes. Discriminating speech from nonspeech is often com-
plicated by the similarity of many sounds to speech, such as an-
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imal vocalizations. As with other pattern recognition tasks, the
first step in this audio classification is to extract and represent the
sound by its relevant features. To achieve good performance and
generalize well to novel sounds, this representation should be
able both to capture the discriminative properties of the sound,
and to resist distortion under various noisy conditions.

Research into content-based audio classification is relatively
new. Among the earliest is the work of Pfeiffer et al. [3], where
a 256 phase-compensated gammaphone filter bank was used to
extract audio features that mapped the sound to response prob-
abilities. Wold et al. [4] adopted instead a statistical model of
time-frequency measurements to represent perceptual values of
the sound. A common alternative approach involves the extrac-
tion of different higher level features to classify audio, such
as Mel-frequency cepstral coefficients (MFCCs) along with a
vector quantizer [5], or noise frame ratios and band periodicity
along with K-nearest neighbor and linear spectral pair-vector
quantization[6], average zero-crossing rate and energy with a
simple threshold to discriminate between speech and music [7],
and an optimized dimensionality reduction using distortion dis-
criminant analysis (DDA) [8].

Two more elaborate systems have been proposed, against
which we shall compare our system. The first is proposed by
Scheirer and Slaney [1] in which thirteen features in time,
frequency, and cepstrum domain are used to model speech
and music. Several classification techniques [e.g., maximum a
posteriori (MAP), Gaussian mixture model (GMM), K nearest
neighbor (KNN)] are then employed to achieve a robust perfor-
mance. The second system is a speech/nonspeech segmentation
technique [2] in which frame-by-frame maximum autocorre-
lation and log-energy features are measured, sorted, and then
followed by linear discriminant analysis and a diagonalization
transform.

The novel aspect of our proposed system is a feature set in-
spired by investigations of various stages of the auditory system
[9]–[12]. The features are computed using a model of the audi-
tory cortex that maps a given sound to a high-dimensional rep-
resentation of its spectro-temporal modulations. A key compo-
nent that makes this approach practical is a multilinear dimen-
sionality reduction method that by making use of multimodal
characteristic of cortical representation, effectively removes re-
dundancies in the measurements in each subspace separately,
producing a compact feature vector suitable for classification
(Section III).

We shall briefly review the auditory model in Section II and
then outline in Section III the mathematical foundation of the
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Fig. 1. Schematic of the early stages of auditory processing. (1) Sound is analyzed by a model of the cochlea consisting of a bank of 128 constant-Q bandpass
filters with center frequencies equally spaced on a logarithmic frequency axis (tonotopic axis). (2) Each filter output is then transduced into auditory-nerve patterns
by a hair cell stage which is modeled as a three-step operation: a highpass filter (the fluid-cilia coupling), followed by an instantaneous nonlinear compression
(gated ionic channels), and then a lowpass filter (hair cell membrane leakage). (3) Finally, a lateral inhibitory network detects discontinuities in the responses across
the tonotopic axis of the auditory nerve array by a first-order derivative with respect to the tonotopic axis and followed by a half-wave rectification. The final output
of this stage (auditory spectrogram) is obtained by integrating Y over a short window, mimicking the further loss of phase-locking observed in the midbrain.

analysis of the auditory model’s outputs. In Section IV, exper-
imental results and performance evaluation of our proposed
system are presented, followed by a comparison against two
different approaches that represent the best of breed in the
literature [1], [2].

II. AUDITORY MODEL

The computational auditory model is based on neurophysio-
logical, biophysical, and psychoacoustical investigations at var-
ious stages of the auditory system [9]–[11]. It consists of two
basic stages. An early stage models the transformation of the
acoustic signal into an internal neural representation referred to
as an auditory spectrogram. A central stage analyzes the spec-
trogram to estimate the content of its spectral and temporal mod-
ulations using a bank of modulation-selective filters mimicking
those described in a model of the mammalian primary auditory
cortex [9]. This stage is responsible for extracting the key fea-
tures upon which the classification is based.

A. Early Auditory System

The stages of the early auditory model are illustrated in Fig. 1.
The acoustic signal entering the ear produces a complex spatio-
temporal pattern of vibrations along the basilar membrane of
the cochlea. The maximal displacement at each cochlear point
corresponds to a distinct tone frequency in the stimulus, cre-
ating a tonotopically-ordered response axis along the length of
the cochlea. Thus, the basilar membrane can be thought of as a
bank of constant- highly asymmetric bandpass filters
equally spaced on a logarithmic frequency axis. In brief, this op-
eration is an affine wavelet transform of the acoustic signal .
This analysis stage is implemented by a bank of 128 overlapping
constant- bandpass filters with center fre-
quencies (CF) that are uniformly distributed along a logarithmic
frequency axis (f), over 5.3 octaves (24 filters/octave). The im-
pulse response of each filter is denoted by . The
cochlear filter outputs are then transduced into au-
ditory-nerve patterns by a hair cell stage which con-

verted cochlear outputs into inner hair cell intracellular poten-
tials. This process is modeled as three-step operation: a high-
pass filter (the fluid-cilia coupling), followed by an instanta-
neous nonlinear compression (gated ionic channels) , and
then a lowpass filter (hair cell membrane leakage) . Fi-
nally, a lateral inhibitory network (LIN) detects discontinuities
in the responses across the tonotopic axis of the auditory nerve
array [13]. The LIN is simply approximated by a first-order
derivative with respect to the tonotopic axis and followed by a
half-wave rectifier to produce . The final output of this
stage is obtained by integrating over a short window,

, with time constant ms mimicking the fur-
ther loss of phase-locking observed in the midbrain. This stage
effectively sharpens the bandwidth of the cochlear filters from
about to 12 [9].

The mathematical formulation for this stage can be summa-
rized as followes:

(1)

(2)

(3)

(4)

where denotes convolution in time.
The above sequence of operations effectively computes a

spectrogram of the speech signal (Fig. 1, right) using a bank
of constant- filters, with a bandwidth tuning of about 12
(or just under 10% of the center frequency of each filter). Dy-
namically, the spectrogram also encodes explicitly all temporal
envelope modulations due to interactions between the spectral
components that fall within the bandwidth of each filter. The
frequencies of these modulations are naturally limited by the
maximum bandwidth of the cochlear filters.

B. Central Auditory System

Higher central auditory stages (especially the primary audi-
tory cortex) further analyze the auditory spectrum into more
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Fig. 2. (a) Cortical multiscale representation of speech. The auditory spectrogram (the output of the early stage) is analyzed by a bank of spectro-temporal
modulation selective filters. The spectro-temporal response field (STRF) of one such filter is shown which corresponds to a neuron that responds well to a ripple of
4-Hz rate and 0.5 cycle/octave scale. The output from such a filter is computed by convolving the STRF with the input spectrogram. The total output as a function
of time from the model is therefore indexed by three parameters: scale, rate, and frequency. (b) Average rate-scale modulation of speech obtained by summing over
all frequencies and averaging over each time window (equation (21) and (22)). The right panel with positive rates is the response of downward filters (u ) and the
right panel with negative rates is the upward ones (u ).

elaborate representations, interpret them, and separate the
different cues and features associated with different sound per-
cepts. Specifically, the auditory cortical model employed here is
mathematically equivalent to a two-dimensional affine wavelet
transform of the auditory spectrogram, with a spectro-temporal
mother wavelet resembling a two-dimensional D spectro-tem-
poral Gabor function. Computationally, this stage estimates
the spectral and temporal modulation content of the auditory
spectrogram via a bank of modulation-selective filters (the
wavelets) centered at each frequency along the tonotopic axis.
Each filter is tuned to a range of temporal modula-
tions, also referred to as rates or velocities ( in hertz) and
spectral modulations, also referred to as densities or scales
( in cycles/octave). A typical Gabor-like spectro-temporal
impulse response or wavelet [usually called spectro-temporal
response field (STRF)] is shown in Fig. 2.

We assume a bank of directional selective STRFs (downward
and upward ) that are real functions formed by com-

bining two complex functions of time and frequency. This is
consistent with physiological finding that most STRFs in pri-
mary auditory cortex have the quadrant separability property
[14]

(5)

(6)

where denotes the real part, the complex conjugate, and
the velocity and spectral density parameters of

the filters, and and are characteristic phases that determine
the degree of asymmetry along time and frequency respectively.
Functions and are analytic signals (a signal which
has no negative frequency components) obtained from and

(7)

(8)

where denotes Hilbert transformation. and are tem-
poral and spectral impulse responses defined by sinusoidally
interpolating between symmetric seed functions (second

derivative of a Gaussian function) and (Gamma function),
and their asymmetric Hilbert transforms

(9)

(10)

The impulse responses for different scales and rates are given
by dilation

(11)

(12)

Therefore, the spectro-temporal response for an input spectro-
gram is given by

(13)

(14)

where denotes convolution with respect to both and .
Its useful to compute the spectro-temporal response in
terms of the output magnitude and phase of the downward
and upward selective filters. For this, the temporal and spa-
tial filters, and can be equivalently expressed in the
wavelet-based analytical forms and as

(15)

(16)

The complex response to downward and upward selective fil-
ters, and , is then defined as

(17)

(18)

where denotes the complex conjugate. The cortical response
[(13) and (14)] for all characteristic phases and can be easily
obtained from and as follows:

(19)

(20)

where denotes the magnitude and the phase. The magni-
tude and the phase of and have a physical interpretation:
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at any time and for all the STRFs tuned to the same ,
the ones with and
symmetries have the maximal downward and upward responses
of and .

These maximal responses, the magnitude of and ,
are used throughout the paper for the purpose of classifica-
tion. Where the spectro-temporal modulation content of the
spectrogram is of particular interest, we obtain the summed
output from all filters with identical modulation selectivity or
STRFs to generate the rate-scale plots: [as shown in Fig. 2(b)
for speech]

(21)

(22)

The final view that emerges is that of a continuously updated
estimate of the spectral and temporal modulation content of the
auditory spectrogram. All parameters of this model are derived
from physiological data in animals and psychoacoustical data in
human subjects as explained in detail in [12], [14], and [15].

Unlike conventional features, our auditory-based features
have multiple scales of time and spectral resolution. Some
respond to fast changes while others are tuned to slower mod-
ulation patterns; A subset are selective to broadband spectra,
and others are more narrowly tuned. For this study, temporal
filters (rate) ranging from 1 to 32 Hz, and spectral filters (scale)
from 0.5 to 8.00 cycle/octave, were used to represent the
spectro-temporal modulations of the sound.

C. Models of Modulation Filter

The importance of slow temporal modulations of sound in
speech intelligibility has been emphasized for a long time [16].
Kingsbury et al. [17] showed the advantage of using modulation
spectrogram in improving the robustness of automatic speech
recognition systems to noise and reverberation. Temporal modu-
lation filter banks inspired by psycoacoustical experiments [18]
have been successfully used in a variety of audio processing
tasks such as automatic speech recognition [19]. Spectro-tem-
poral features have recently also been used in speech enhance-
ment [20], speech coding [21], and speech recognition to pro-
vide more robustness [22].

III. MULTILINEAR TENSOR ANALYSIS

The output of auditory model is a multidimensional array
in which modulations are presented along the four dimensions
of time, frequency, rate, and scale. For our purpose here, the
time axis is averaged over a given time window which results
in a three mode tensor for each time window with each ele-
ment representing the overall modulations at corresponding fre-
quency, rate, and scale. In order to obtain a good resolution, suf-
ficient number of filters in each mode are required. As a con-
sequence, the dimensions of the feature space are very large

scale filters rate filters channels

. Working in this feature space directly is impractical be-
cause a sizable number of training samples is required to char-
acterize the space adequately [23]. Traditional dimensionality
reduction methods like principal component analysis (PCA) are
inefficient for multidimensional data because they treat all the
elements of the feature space similarly without considering the
varying degrees of redundancy and discriminative contribution
of each mode.

Instead, it is possible using multidimensional PCA to tailor
the amount of reduction in each subspace independently of
others based on the relative magnitude of corresponding sin-
gular values. Furthermore, it is also feasible to reduce the
amount of training samples and computational load signifi-
cantly since each subspace is considered separately. We shall
demonstrate here the utility of a generalized method for the
PCA of multidimensional data based on higher-order sin-
gular-value decomposition (HOSVD) [24].

A. Basic Tensor Definitions

Multilinear algebra is the algebra of tensors. Tensors are gen-
eralizations of scalars (no indices), vectors (single index), and
matrices (two indices) to an arbitrary number of indices. They
provide a natural way of representing information along many
dimensions. Substantial results have already been achieved in
this field. Tucker first formulated the three-mode data model
[25], while Kroonenberg formulated alternating least-square
(ALS) method to implement three mode factor analysis [26].
Lathauwer et al. established a generalization of singular value
decomposition (SVD) to higher order tensors [24], and also
introduced an iterative method for optimizing the best rank

approximation of tensors [27]. Tensor al-
gebra and HOSVD have been applied successfully in wide
variety of fields including higher-order-only independent com-
ponent analysis (ICA) [28], face recognition [29], and selective
image compression along a desired dimension [30].

A Tensor is a multi-index array of nu-
merical values whose elements are denoted by . Ma-
trix column vectors are referred to as vectors and
row vectors as vectors. The vectors of
an th-order tensor are the vectors with components ob-
tained from by varying index while keeping the other in-
dices fixed. Matrix representation of a tensor is obtained by
stacking all the columns (rows, ) of the tensor one after the
other. The matrix unfolding of
denoted by is the matrix
whose columns are vectors of tensor A.

An th-order tensor has when it is expressible
as the outer product of vectors

(23)

The rank of an arbitrary -order tensor , denoted by
is the minimal number of tensors that yield

in a linear combination. The of ,
denoted by , is defined as the dimension of the vector space
generated by the vectors

(24)
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The product of a tensor by a
matrix , denoted by , is an

-tensor given by

(25)

for all index values.

B. Multilinear SVD and PCA

Matrix singular-value decomposition orthogonalizes the
space spanned by column and rows of the matrix. In general,
every matrix can be written as the product

(26)

in which and are unitary matrices contains the left- and
right-singular vectors of . is a pseudodiagonal matrix with
ordered singular values of on the diagonal.

If is a data matrix in which each column represents a data
sample, then the left singular vectors of (matrix ) are the
principal axes of the data space. Keeping only the coefficients
corresponding to the largest singular values of (principal
components or PCs) is an effective means of approximating the
data in a low-dimensional subspace. To generalize this concept
to multidimensional data, we consider a generalization of SVD
to tensors [24]. Every -tensor can be
written as the product

(27)

in which is a unitary matrix containing left singular vectors
of the unfolding of tensor , and is a

tensor which has the properties of all-orthogonality
and ordering. The matrix representation of the HOSVD can be
written as

(28)

in which denotes the Kronecker product. The previous equa-
tion can also be expressed as

(29)

in which is a diagonal matrix made by singular values of
and

(30)
This shows that, at matrix level, the HOSVD conditions lead

to an SVD of the matrix unfolding. Lathauwer et al. shows
[24] that the left-singular matrices of the different matrix un-
folding of correspond to unitary transformations that induce
the HOSVD structure which in turn ensures that the HOSVD
inherits all the classical space properties from the matrix SVD.

HOSVD results in a new ordered orthogonal basis for rep-
resentation of the data in subspaces spanned by each mode of
the tensor. Dimensionality reduction in each space is obtained

Fig. 3. Illustration of equation (32).

by projecting data samples on principal axes and keeping only
the components that correspond to the largest singular values
of that subspace. However, unlike the matrix case in which the
best approximation of a given matrix is obtained from
the truncated SVD, this procedure does not result in optimal
approximation in the case of tensors. Instead, the optimal best

approximation of a tensor can be ob-
tained by an iterative algorithm in which HOSVD provides the
initial values [27].

C. Multilinear Analysis of Cortical Representation

The auditory model transforms a sound signal to its corre-
sponding time-varying cortical representation. Averaging over
a given time window results in a cube of data in rate-scale-fre-
quency space. Although the dimension of this space is large,
its elements are highly correlated making it possible to reduce
the dimension significantly using a comprehensive data set, and
finding new multilinear and mutually orthogonal principal axes
that approximate the real space spanned by these data. The as-
sembled training set is described in detail in Section IV-A which
contains 1223 samples from speech and nonspeech classes. The
resulting data tensor , obtained by stacking all training tensors
is a tensor. Next, tensor is decomposed
to its singular vectors

(31)

in which , , and are orthonormal ordered
matrices containing subspace singular vectors, obtained by un-
folding along its corresponding modes. Tensor is the core
tensor with the same dimensions as .

Each singular matrix is then truncated by setting a predeter-
mined threshold so as retain only the desired number of prin-
cipal axes in each mode. New sound samples are first trans-
formed to their cortical representation, , and are then projected
onto these truncated orthonormal axes , , (as
shown in Fig. 3)

(32)

The resulting tensor whose dimension is equal to the total
number of retained singular vectors in each mode, thus, con-
tains the multilinear cortical principal components of the sound
sample. is then vectorized and normalized by subtracting its
mean and dividing by its norm to obtain a compact feature vector
for classification.
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D. Classification

Classification was performed using a support vector machine
(SVM) [31], [32]. SVMs find the optimal boundary that sep-
arates two classes in such a way as to maximize the margin
between separating boundary and closest samples to it (sup-
port vectors). This in general results in improving generaliza-
tion from training to test data [31]. Radial basis function (RBF)
were used as SVM kernel.

IV. EXPERIMENTAL RESULTS

A. Audio Database

An audio database was assembled from five publicly avail-
able corpora. Details of the database are as follows.

Speech samples were taken from TIMIT Acoustic-Phonetic
Continuous Speech Corpus [33] which contains short sentences
spoken by male and female native English speakers with
eight dialects. Two hundred ninety-nine different sentences
spoken by different speakers (male and female) were selected
for training and 160 different sentences spoken by different
speakers (male and female) were selected for test purpose. Sen-
tences and speakers in training and test sets were also different.

To make the nonspeech class as comprehensive as possible,
sounds from animal vocalizations, music, and environmental
sounds were assembled together. Animal vocalization were
taken from BBC Sound Effects audio CD collection [34] (263
for training, 139 for test). Music samples that covered a large
variety of musical styles were selected from RWC genre data-
base [35] (349 for training, 185 for test). Environmental sounds
were assembled from Noisex [36] and Auroa [37] databases
which have stationary and nonstationary sounds including
white and pink noise, factory, jets, destroyer engine, military
vehicles, cars, and several speech babble recorded in different
environments like restaurant, airport, and exhibition (312 for
training, 167 for test).

The training set included 299 speech and 924 nonspeech sam-
ples and the test set consisted of 160 speech and 491 nonspeech
samples. The length of each utterance in training and test is
equal to the selected time window (e.g., one 1-s sample per
sound file).1

B. Number of Principal Components

The number of retained PCs in each subspace is determined
by analyzing the contribution of each PC to the representation
of associated subspace. The contribution of th principal com-
ponent of subspace whose corresponding eigenvalue is
is defined as

(33)

where denotes the dimension of (128 for frequency, 12 for
rate and 5 for scale). The number of PCs in each subspace then
can be specified by including only the PCs whose is larger
than some threshold. Fig. 4 shows the number of principal com-
ponents in each of the three subspaces as a function of threshold
on the percentage of contribution. In Fig. 5, the classification

1The list of files and offsets is available from the authors.

Fig. 4. Total number of retained PCs in each of the subspaces of frequency,
rate, and scale as a function of threshold on contribution percentage. The vertical
axis indicates the number of PCs in each subspace that have contribution [� from
equation (33)] more than the threshold.

Fig. 5. Percentage of correctly classified samples as a function of threshold on
contribution percentage.

accuracy is demonstrated as a function of threshold. Based on
this analysis, the minimum number of principal components to
achieve 100% accuracy was specified to be 7 for frequency, 5
for rate and 4 for scale subspace which includes PCs that have
contribution of 3.5% or more.

C. Comparison and Results

To evaluate the robustness and the ability of system to gen-
eralize to unseen noisy conditions, we conducted a comparison
with two state-of-the-art studies, one from generic-audio anal-
ysis community by Scheirer and Slaney [1] and one from auto-
matic-speech-recognition community by Kingsbery et al. [2].

Multifeature [1]: The first system, which was originally de-
signed to distinguish speech from music, derived 13 features in
time, frequency, and cepstrum domain to represent speech and
music. The features were 4-Hz modulation energy, percentage
of “low-energy” frames, spectral rolloff point, spectral centroid,



926 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 14, NO. 3, MAY 2006

Fig. 6. Effect of window length on the percentage of correctly classified
speech.

Fig. 7. Effect of window length on the percentage of correctly classified
nonspeech.

spectral flux, zero-crossing rate, cepstrum resynthesis residual,
and their variances. The 13th feature, pulse metric, was ne-
glected for this comparison since its latency was too long (more
than 2 s).

In the original system, two models were formed for speech
and music in the feature space. Classification was performed
using a likelihood estimate of a given sample for each model.
To eliminate performance differences due to the use of different
classifiers, an SVM with an RBF kernel was used in all compar-
isons. Our implementation of the system was first evaluated on
the original database and similar or better results were obtained
with SVM compared to the original publication [1].

Voicing-Energy [2]: A second system was tested that was
based on an audio segmentation algorithm from the ASR work
[2]. In the proposed technique, the feature vector used in the seg-
mentation incorporated information about the degree of voicing
and frame-level log-energy value. Degree of voicing is com-
puted by finding the maximum of autocorrelation in a specified

TABLE I
PERCENTAGE OF CORRECT CLASSIFICATION FOR

WINDOW LENGTH OF ONE SECOND

TABLE II
PERCENTAGE OF CORRECT CLASSIFICATION FOR

WINDOW LENGTH OF HALF A SECOND

Fig. 8. Effects of white noise on percentage of correctly classified speech for
auditory model, multifeature [1], and voicing-energy [2] methods.

Fig. 9. Effects of white noise on percentage of correctly classified nonspeech
for auditory model, multifeature [1], and voicing-energy [2] methods.

range, whereas log-energy was computed for every short frame
of sound weighted with a Hanning window. Several frames of
these features were then concatenated and sorted in increasing
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Fig. 10. Effects of pink noise on percentage of correctly classified speech for
auditory model, multifeature [1], and voicing-energy [2] methods.

Fig. 11. Effects of pink noise on percentage of correctly classified nonspeech
for auditory model, multifeature [1], and voicing-energy [2] methods.

order, and the resulting feature vector was reduced to two di-
mensions by a linear discriminant analysis followed by diago-
nalizing transform. The reason for sorting the elements was to
eliminate details of temporal evolutions which were not relevant
for this task. Our evaluation of Kingsbury’s system suggested
that direct classification of the original sorted vector with an
SVM classifier similar to the other two systems outperformed
the one in reduced dimension. For this reason, the classification
was performed in the original feature space.

Our auditory model and the two benchmark algorithms from
the literature were trained and tested on the same database. One
of the important parameters in any such speech detection/dis-
crimination task is the time window or duration of the signal to
be classified, because it directly affects the resolution and ac-
curacy of the system. Figs. 6 and 7 demonstrate the effect of
window length on the percentage of correctly classified speech
and nonspeech. In all three methods, some features may not
give a meaningful measurement when the time window is too

Fig. 12. Effects of reverberation on percentage of correctly classified speech
for auditory model, multifeature [1], and voicing-energy [2] methods.

Fig. 13. Effects of reverberation on percentage of correctly classified
nonspeech for auditory model, multifeature [1], and voicing-energy [2]
methods.

short. The classification performance of the three systems for
two window lengths of 1 and 0.5 s is shown in Tables I and II.
The accuracy of all three systems improve as the time window
increases.

Audio processing systems designed for realistic applications
must be robust in a variety of conditions because training the
systems for all possible situations is impractical. Detection of
speech at very low SNR is desired in many applications such as
speech enhancement in which a robust detection of nonspeech
(noise) frames is crucial for accurate measurement of the noise
statistics [20]. A series of tests were conducted to evaluate the
generalization of the three methods to unseen noisy and re-
verberant sound. Classifiers were trained solely to discriminate
clean speech from nonspeech and then tested in three conditions
in which speech was distorted with noise or reverberation. In
each test, the percentage of correctly detected speech and non-
speech was considered as the measure of performance. For the
first two tests, white and pink noise were added to speech with
specified signal to noise ratio (SNR). White and pink noise were
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Fig. 14. Effect of white noise on average spectro-temporal modulations of speech for SNRs �15, 0, and 15 dB. The spectro-temporal representation of noisy
speech preserves the speech specific spectro-temporal features (e.g., near 4 Hz, 2 cycle/octave) even at SNR as low as 0 dB.

Fig. 15. Effects of pink noise on average spectro-temporal modulations of speech for different SNRs �15, 0, and 15 dB. The speech specific spectro-temporal
features (e.g. near 4 Hz, 2 cycle/octave) are preserved even at SNR as low as 0 dB.

Fig. 16. Effects of reverberation on average spectro-temporal modulations of speech for time delays 200, 400, and 600 ms. Increasing the time delay results in
gradual loss of high-rate temporal modulations of speech.

not included in the training set as nonspeech samples. SNR was
measured from the average power of speech and noise

(34)

Figs. 14 and 15 illustrate the effect of white and pink noise
on the average spectro-temporal modulations of speech. The
spectro-temporal representation of noisy speech preserves the
speech specific features (e.g., near 4 Hz, 2 cycle/octave) even at
SNR as low as 0 dB (Figs. 14 and 15, middle). The detection re-
sults for speech in white noise (Figs. 8 and 9) demonstrate that
while the three systems have comparable performance in clean
conditions, the auditory features remain robust down to fairy
low SNRs. This pattern is repeated with additive pink noise al-
though performance degradation for all systems occurs at higher
SNRs (Figs. 10 and 11) because of more overlap between speech
and noise energy.

Reverberation is another widely encountered distortion in re-
alistic applications. To examine the effect of different levels of

reverberation on the performance of these systems, a realistic
reverberation condition was simulated by convolving the signal
with a random gaussian noise with exponential decay. The ef-
fect on the average spectro-temporal modulations of speech are
shown in Fig. 16. Increasing the time delay results in gradual
loss of high-rate temporal modulations of speech. Figs. 12 and
13 demonstrate the effect of reverberation on the classification
accuracy.

On the whole, these tests demonstrate the significant robust-
ness of the auditory model.

V. SUMMARY AND CONCLUSION

A spectro-temporal auditory method for audio classification
and segmentation has been described, tested, and compared
to two state-of-the-art alternative approaches. The method
employs features extracted by a biologically inspired auditory
model of auditory processing in the cortex. Unlike conventional
features, auditory-based features have multiple-scales of time
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and spectral resolution. The drawback of such a representation
is its high dimensionality, and, hence, to utilize it, we applied an
efficient multilinear dimensionality reduction algorithm based
on HOSVD of multimodal data.

The performance of the proposed auditory system was tested
in noise and reverberation and compared favorably with alter-
native systems, thus, demonstrating that the proposed system
generalizes well to novel situations, an ability that is generally
lacking in many of today’s audio and speech recognition and
classification systems. The success of these multiscale features
for this speech detection task suggests that these features are
more worth investigating for speech recognition [38] or noise
suppression [39] than conventional approaches based on simple
cepstral features.

This work is but one in a series of efforts at incorporating
multiscale cortical representations (and more broadly, percep-
tual insights) in a variety of audio and speech processing appli-
cations. For example, the deterioration of the spectro-temporal
modulations of speech in noise and reverberation (e.g., Figs. 14,
–16), or indeed under any kind of linear or nonlinear distortion,
can be used as an indicator of predicted speech intelligibility
[15]. Similarly, the multiscale rate-scale-frequency representa-
tion can account for the perception of complex sounds and per-
ceptual thresholds in a variety of settings [40]. Finally, the au-
ditory model can be adapted and expanded for a wide range of
applications such as the speech enhancement [20], or the effi-
cient encoding of speech and music [21].
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